mirror of
				https://github.com/go-gitea/gitea.git
				synced 2025-10-27 00:23:41 +09:00 
			
		
		
		
	Added all required dependencies
This commit is contained in:
		
							
								
								
									
										344
									
								
								vendor/github.com/klauspost/compress/flate/huffman_code.go
									
									
									
										generated
									
									
										vendored
									
									
										Normal file
									
								
							
							
						
						
									
										344
									
								
								vendor/github.com/klauspost/compress/flate/huffman_code.go
									
									
									
										generated
									
									
										vendored
									
									
										Normal file
									
								
							| @@ -0,0 +1,344 @@ | ||||
| // Copyright 2009 The Go Authors. All rights reserved. | ||||
| // Use of this source code is governed by a BSD-style | ||||
| // license that can be found in the LICENSE file. | ||||
|  | ||||
| package flate | ||||
|  | ||||
| import ( | ||||
| 	"math" | ||||
| 	"sort" | ||||
| ) | ||||
|  | ||||
| // hcode is a huffman code with a bit code and bit length. | ||||
| type hcode struct { | ||||
| 	code, len uint16 | ||||
| } | ||||
|  | ||||
| type huffmanEncoder struct { | ||||
| 	codes     []hcode | ||||
| 	freqcache []literalNode | ||||
| 	bitCount  [17]int32 | ||||
| 	lns       byLiteral // stored to avoid repeated allocation in generate | ||||
| 	lfs       byFreq    // stored to avoid repeated allocation in generate | ||||
| } | ||||
|  | ||||
| type literalNode struct { | ||||
| 	literal uint16 | ||||
| 	freq    int32 | ||||
| } | ||||
|  | ||||
| // A levelInfo describes the state of the constructed tree for a given depth. | ||||
| type levelInfo struct { | ||||
| 	// Our level.  for better printing | ||||
| 	level int32 | ||||
|  | ||||
| 	// The frequency of the last node at this level | ||||
| 	lastFreq int32 | ||||
|  | ||||
| 	// The frequency of the next character to add to this level | ||||
| 	nextCharFreq int32 | ||||
|  | ||||
| 	// The frequency of the next pair (from level below) to add to this level. | ||||
| 	// Only valid if the "needed" value of the next lower level is 0. | ||||
| 	nextPairFreq int32 | ||||
|  | ||||
| 	// The number of chains remaining to generate for this level before moving | ||||
| 	// up to the next level | ||||
| 	needed int32 | ||||
| } | ||||
|  | ||||
| // set sets the code and length of an hcode. | ||||
| func (h *hcode) set(code uint16, length uint16) { | ||||
| 	h.len = length | ||||
| 	h.code = code | ||||
| } | ||||
|  | ||||
| func maxNode() literalNode { return literalNode{math.MaxUint16, math.MaxInt32} } | ||||
|  | ||||
| func newHuffmanEncoder(size int) *huffmanEncoder { | ||||
| 	return &huffmanEncoder{codes: make([]hcode, size)} | ||||
| } | ||||
|  | ||||
| // Generates a HuffmanCode corresponding to the fixed literal table | ||||
| func generateFixedLiteralEncoding() *huffmanEncoder { | ||||
| 	h := newHuffmanEncoder(maxNumLit) | ||||
| 	codes := h.codes | ||||
| 	var ch uint16 | ||||
| 	for ch = 0; ch < maxNumLit; ch++ { | ||||
| 		var bits uint16 | ||||
| 		var size uint16 | ||||
| 		switch { | ||||
| 		case ch < 144: | ||||
| 			// size 8, 000110000  .. 10111111 | ||||
| 			bits = ch + 48 | ||||
| 			size = 8 | ||||
| 			break | ||||
| 		case ch < 256: | ||||
| 			// size 9, 110010000 .. 111111111 | ||||
| 			bits = ch + 400 - 144 | ||||
| 			size = 9 | ||||
| 			break | ||||
| 		case ch < 280: | ||||
| 			// size 7, 0000000 .. 0010111 | ||||
| 			bits = ch - 256 | ||||
| 			size = 7 | ||||
| 			break | ||||
| 		default: | ||||
| 			// size 8, 11000000 .. 11000111 | ||||
| 			bits = ch + 192 - 280 | ||||
| 			size = 8 | ||||
| 		} | ||||
| 		codes[ch] = hcode{code: reverseBits(bits, byte(size)), len: size} | ||||
| 	} | ||||
| 	return h | ||||
| } | ||||
|  | ||||
| func generateFixedOffsetEncoding() *huffmanEncoder { | ||||
| 	h := newHuffmanEncoder(30) | ||||
| 	codes := h.codes | ||||
| 	for ch := range codes { | ||||
| 		codes[ch] = hcode{code: reverseBits(uint16(ch), 5), len: 5} | ||||
| 	} | ||||
| 	return h | ||||
| } | ||||
|  | ||||
| var fixedLiteralEncoding *huffmanEncoder = generateFixedLiteralEncoding() | ||||
| var fixedOffsetEncoding *huffmanEncoder = generateFixedOffsetEncoding() | ||||
|  | ||||
| func (h *huffmanEncoder) bitLength(freq []int32) int { | ||||
| 	var total int | ||||
| 	for i, f := range freq { | ||||
| 		if f != 0 { | ||||
| 			total += int(f) * int(h.codes[i].len) | ||||
| 		} | ||||
| 	} | ||||
| 	return total | ||||
| } | ||||
|  | ||||
| const maxBitsLimit = 16 | ||||
|  | ||||
| // Return the number of literals assigned to each bit size in the Huffman encoding | ||||
| // | ||||
| // This method is only called when list.length >= 3 | ||||
| // The cases of 0, 1, and 2 literals are handled by special case code. | ||||
| // | ||||
| // list  An array of the literals with non-zero frequencies | ||||
| //             and their associated frequencies. The array is in order of increasing | ||||
| //             frequency, and has as its last element a special element with frequency | ||||
| //             MaxInt32 | ||||
| // maxBits     The maximum number of bits that should be used to encode any literal. | ||||
| //             Must be less than 16. | ||||
| // return      An integer array in which array[i] indicates the number of literals | ||||
| //             that should be encoded in i bits. | ||||
| func (h *huffmanEncoder) bitCounts(list []literalNode, maxBits int32) []int32 { | ||||
| 	if maxBits >= maxBitsLimit { | ||||
| 		panic("flate: maxBits too large") | ||||
| 	} | ||||
| 	n := int32(len(list)) | ||||
| 	list = list[0 : n+1] | ||||
| 	list[n] = maxNode() | ||||
|  | ||||
| 	// The tree can't have greater depth than n - 1, no matter what. This | ||||
| 	// saves a little bit of work in some small cases | ||||
| 	if maxBits > n-1 { | ||||
| 		maxBits = n - 1 | ||||
| 	} | ||||
|  | ||||
| 	// Create information about each of the levels. | ||||
| 	// A bogus "Level 0" whose sole purpose is so that | ||||
| 	// level1.prev.needed==0.  This makes level1.nextPairFreq | ||||
| 	// be a legitimate value that never gets chosen. | ||||
| 	var levels [maxBitsLimit]levelInfo | ||||
| 	// leafCounts[i] counts the number of literals at the left | ||||
| 	// of ancestors of the rightmost node at level i. | ||||
| 	// leafCounts[i][j] is the number of literals at the left | ||||
| 	// of the level j ancestor. | ||||
| 	var leafCounts [maxBitsLimit][maxBitsLimit]int32 | ||||
|  | ||||
| 	for level := int32(1); level <= maxBits; level++ { | ||||
| 		// For every level, the first two items are the first two characters. | ||||
| 		// We initialize the levels as if we had already figured this out. | ||||
| 		levels[level] = levelInfo{ | ||||
| 			level:        level, | ||||
| 			lastFreq:     list[1].freq, | ||||
| 			nextCharFreq: list[2].freq, | ||||
| 			nextPairFreq: list[0].freq + list[1].freq, | ||||
| 		} | ||||
| 		leafCounts[level][level] = 2 | ||||
| 		if level == 1 { | ||||
| 			levels[level].nextPairFreq = math.MaxInt32 | ||||
| 		} | ||||
| 	} | ||||
|  | ||||
| 	// We need a total of 2*n - 2 items at top level and have already generated 2. | ||||
| 	levels[maxBits].needed = 2*n - 4 | ||||
|  | ||||
| 	level := maxBits | ||||
| 	for { | ||||
| 		l := &levels[level] | ||||
| 		if l.nextPairFreq == math.MaxInt32 && l.nextCharFreq == math.MaxInt32 { | ||||
| 			// We've run out of both leafs and pairs. | ||||
| 			// End all calculations for this level. | ||||
| 			// To make sure we never come back to this level or any lower level, | ||||
| 			// set nextPairFreq impossibly large. | ||||
| 			l.needed = 0 | ||||
| 			levels[level+1].nextPairFreq = math.MaxInt32 | ||||
| 			level++ | ||||
| 			continue | ||||
| 		} | ||||
|  | ||||
| 		prevFreq := l.lastFreq | ||||
| 		if l.nextCharFreq < l.nextPairFreq { | ||||
| 			// The next item on this row is a leaf node. | ||||
| 			n := leafCounts[level][level] + 1 | ||||
| 			l.lastFreq = l.nextCharFreq | ||||
| 			// Lower leafCounts are the same of the previous node. | ||||
| 			leafCounts[level][level] = n | ||||
| 			l.nextCharFreq = list[n].freq | ||||
| 		} else { | ||||
| 			// The next item on this row is a pair from the previous row. | ||||
| 			// nextPairFreq isn't valid until we generate two | ||||
| 			// more values in the level below | ||||
| 			l.lastFreq = l.nextPairFreq | ||||
| 			// Take leaf counts from the lower level, except counts[level] remains the same. | ||||
| 			copy(leafCounts[level][:level], leafCounts[level-1][:level]) | ||||
| 			levels[l.level-1].needed = 2 | ||||
| 		} | ||||
|  | ||||
| 		if l.needed--; l.needed == 0 { | ||||
| 			// We've done everything we need to do for this level. | ||||
| 			// Continue calculating one level up. Fill in nextPairFreq | ||||
| 			// of that level with the sum of the two nodes we've just calculated on | ||||
| 			// this level. | ||||
| 			if l.level == maxBits { | ||||
| 				// All done! | ||||
| 				break | ||||
| 			} | ||||
| 			levels[l.level+1].nextPairFreq = prevFreq + l.lastFreq | ||||
| 			level++ | ||||
| 		} else { | ||||
| 			// If we stole from below, move down temporarily to replenish it. | ||||
| 			for levels[level-1].needed > 0 { | ||||
| 				level-- | ||||
| 			} | ||||
| 		} | ||||
| 	} | ||||
|  | ||||
| 	// Somethings is wrong if at the end, the top level is null or hasn't used | ||||
| 	// all of the leaves. | ||||
| 	if leafCounts[maxBits][maxBits] != n { | ||||
| 		panic("leafCounts[maxBits][maxBits] != n") | ||||
| 	} | ||||
|  | ||||
| 	bitCount := h.bitCount[:maxBits+1] | ||||
| 	bits := 1 | ||||
| 	counts := &leafCounts[maxBits] | ||||
| 	for level := maxBits; level > 0; level-- { | ||||
| 		// chain.leafCount gives the number of literals requiring at least "bits" | ||||
| 		// bits to encode. | ||||
| 		bitCount[bits] = counts[level] - counts[level-1] | ||||
| 		bits++ | ||||
| 	} | ||||
| 	return bitCount | ||||
| } | ||||
|  | ||||
| // Look at the leaves and assign them a bit count and an encoding as specified | ||||
| // in RFC 1951 3.2.2 | ||||
| func (h *huffmanEncoder) assignEncodingAndSize(bitCount []int32, list []literalNode) { | ||||
| 	code := uint16(0) | ||||
| 	for n, bits := range bitCount { | ||||
| 		code <<= 1 | ||||
| 		if n == 0 || bits == 0 { | ||||
| 			continue | ||||
| 		} | ||||
| 		// The literals list[len(list)-bits] .. list[len(list)-bits] | ||||
| 		// are encoded using "bits" bits, and get the values | ||||
| 		// code, code + 1, ....  The code values are | ||||
| 		// assigned in literal order (not frequency order). | ||||
| 		chunk := list[len(list)-int(bits):] | ||||
|  | ||||
| 		h.lns.sort(chunk) | ||||
| 		for _, node := range chunk { | ||||
| 			h.codes[node.literal] = hcode{code: reverseBits(code, uint8(n)), len: uint16(n)} | ||||
| 			code++ | ||||
| 		} | ||||
| 		list = list[0 : len(list)-int(bits)] | ||||
| 	} | ||||
| } | ||||
|  | ||||
| // Update this Huffman Code object to be the minimum code for the specified frequency count. | ||||
| // | ||||
| // freq  An array of frequencies, in which frequency[i] gives the frequency of literal i. | ||||
| // maxBits  The maximum number of bits to use for any literal. | ||||
| func (h *huffmanEncoder) generate(freq []int32, maxBits int32) { | ||||
| 	if h.freqcache == nil { | ||||
| 		// Allocate a reusable buffer with the longest possible frequency table. | ||||
| 		// Possible lengths are codegenCodeCount, offsetCodeCount and maxNumLit. | ||||
| 		// The largest of these is maxNumLit, so we allocate for that case. | ||||
| 		h.freqcache = make([]literalNode, maxNumLit+1) | ||||
| 	} | ||||
| 	list := h.freqcache[:len(freq)+1] | ||||
| 	// Number of non-zero literals | ||||
| 	count := 0 | ||||
| 	// Set list to be the set of all non-zero literals and their frequencies | ||||
| 	for i, f := range freq { | ||||
| 		if f != 0 { | ||||
| 			list[count] = literalNode{uint16(i), f} | ||||
| 			count++ | ||||
| 		} else { | ||||
| 			list[count] = literalNode{} | ||||
| 			h.codes[i].len = 0 | ||||
| 		} | ||||
| 	} | ||||
| 	list[len(freq)] = literalNode{} | ||||
|  | ||||
| 	list = list[:count] | ||||
| 	if count <= 2 { | ||||
| 		// Handle the small cases here, because they are awkward for the general case code. With | ||||
| 		// two or fewer literals, everything has bit length 1. | ||||
| 		for i, node := range list { | ||||
| 			// "list" is in order of increasing literal value. | ||||
| 			h.codes[node.literal].set(uint16(i), 1) | ||||
| 		} | ||||
| 		return | ||||
| 	} | ||||
| 	h.lfs.sort(list) | ||||
|  | ||||
| 	// Get the number of literals for each bit count | ||||
| 	bitCount := h.bitCounts(list, maxBits) | ||||
| 	// And do the assignment | ||||
| 	h.assignEncodingAndSize(bitCount, list) | ||||
| } | ||||
|  | ||||
| type byLiteral []literalNode | ||||
|  | ||||
| func (s *byLiteral) sort(a []literalNode) { | ||||
| 	*s = byLiteral(a) | ||||
| 	sort.Sort(s) | ||||
| } | ||||
|  | ||||
| func (s byLiteral) Len() int { return len(s) } | ||||
|  | ||||
| func (s byLiteral) Less(i, j int) bool { | ||||
| 	return s[i].literal < s[j].literal | ||||
| } | ||||
|  | ||||
| func (s byLiteral) Swap(i, j int) { s[i], s[j] = s[j], s[i] } | ||||
|  | ||||
| type byFreq []literalNode | ||||
|  | ||||
| func (s *byFreq) sort(a []literalNode) { | ||||
| 	*s = byFreq(a) | ||||
| 	sort.Sort(s) | ||||
| } | ||||
|  | ||||
| func (s byFreq) Len() int { return len(s) } | ||||
|  | ||||
| func (s byFreq) Less(i, j int) bool { | ||||
| 	if s[i].freq == s[j].freq { | ||||
| 		return s[i].literal < s[j].literal | ||||
| 	} | ||||
| 	return s[i].freq < s[j].freq | ||||
| } | ||||
|  | ||||
| func (s byFreq) Swap(i, j int) { s[i], s[j] = s[j], s[i] } | ||||
		Reference in New Issue
	
	Block a user