mirror of
				https://github.com/go-gitea/gitea.git
				synced 2025-10-31 21:28:11 +09:00 
			
		
		
		
	Added all required dependencies
This commit is contained in:
		
							
								
								
									
										856
									
								
								vendor/github.com/klauspost/compress/flate/snappy.go
									
									
									
										generated
									
									
										vendored
									
									
										Normal file
									
								
							
							
						
						
									
										856
									
								
								vendor/github.com/klauspost/compress/flate/snappy.go
									
									
									
										generated
									
									
										vendored
									
									
										Normal file
									
								
							| @@ -0,0 +1,856 @@ | ||||
| // Copyright 2011 The Snappy-Go Authors. All rights reserved. | ||||
| // Modified for deflate by Klaus Post (c) 2015. | ||||
| // Use of this source code is governed by a BSD-style | ||||
| // license that can be found in the LICENSE file. | ||||
|  | ||||
| package flate | ||||
|  | ||||
| // emitLiteral writes a literal chunk and returns the number of bytes written. | ||||
| func emitLiteral(dst *tokens, lit []byte) { | ||||
| 	ol := int(dst.n) | ||||
| 	for i, v := range lit { | ||||
| 		dst.tokens[(i+ol)&maxStoreBlockSize] = token(v) | ||||
| 	} | ||||
| 	dst.n += uint16(len(lit)) | ||||
| } | ||||
|  | ||||
| // emitCopy writes a copy chunk and returns the number of bytes written. | ||||
| func emitCopy(dst *tokens, offset, length int) { | ||||
| 	dst.tokens[dst.n] = matchToken(uint32(length-3), uint32(offset-minOffsetSize)) | ||||
| 	dst.n++ | ||||
| } | ||||
|  | ||||
| type snappyEnc interface { | ||||
| 	Encode(dst *tokens, src []byte) | ||||
| 	Reset() | ||||
| } | ||||
|  | ||||
| func newSnappy(level int) snappyEnc { | ||||
| 	switch level { | ||||
| 	case 1: | ||||
| 		return &snappyL1{} | ||||
| 	case 2: | ||||
| 		return &snappyL2{snappyGen: snappyGen{cur: maxStoreBlockSize, prev: make([]byte, 0, maxStoreBlockSize)}} | ||||
| 	case 3: | ||||
| 		return &snappyL3{snappyGen: snappyGen{cur: maxStoreBlockSize, prev: make([]byte, 0, maxStoreBlockSize)}} | ||||
| 	case 4: | ||||
| 		return &snappyL4{snappyL3{snappyGen: snappyGen{cur: maxStoreBlockSize, prev: make([]byte, 0, maxStoreBlockSize)}}} | ||||
| 	default: | ||||
| 		panic("invalid level specified") | ||||
| 	} | ||||
| } | ||||
|  | ||||
| const ( | ||||
| 	tableBits       = 14             // Bits used in the table | ||||
| 	tableSize       = 1 << tableBits // Size of the table | ||||
| 	tableMask       = tableSize - 1  // Mask for table indices. Redundant, but can eliminate bounds checks. | ||||
| 	tableShift      = 32 - tableBits // Right-shift to get the tableBits most significant bits of a uint32. | ||||
| 	baseMatchOffset = 1              // The smallest match offset | ||||
| 	baseMatchLength = 3              // The smallest match length per the RFC section 3.2.5 | ||||
| 	maxMatchOffset  = 1 << 15        // The largest match offset | ||||
| ) | ||||
|  | ||||
| func load32(b []byte, i int) uint32 { | ||||
| 	b = b[i : i+4 : len(b)] // Help the compiler eliminate bounds checks on the next line. | ||||
| 	return uint32(b[0]) | uint32(b[1])<<8 | uint32(b[2])<<16 | uint32(b[3])<<24 | ||||
| } | ||||
|  | ||||
| func load64(b []byte, i int) uint64 { | ||||
| 	b = b[i : i+8 : len(b)] // Help the compiler eliminate bounds checks on the next line. | ||||
| 	return uint64(b[0]) | uint64(b[1])<<8 | uint64(b[2])<<16 | uint64(b[3])<<24 | | ||||
| 		uint64(b[4])<<32 | uint64(b[5])<<40 | uint64(b[6])<<48 | uint64(b[7])<<56 | ||||
| } | ||||
|  | ||||
| func hash(u uint32) uint32 { | ||||
| 	return (u * 0x1e35a7bd) >> tableShift | ||||
| } | ||||
|  | ||||
| // snappyL1 encapsulates level 1 compression | ||||
| type snappyL1 struct{} | ||||
|  | ||||
| func (e *snappyL1) Reset() {} | ||||
|  | ||||
| func (e *snappyL1) Encode(dst *tokens, src []byte) { | ||||
| 	const ( | ||||
| 		inputMargin            = 16 - 1 | ||||
| 		minNonLiteralBlockSize = 1 + 1 + inputMargin | ||||
| 	) | ||||
|  | ||||
| 	// This check isn't in the Snappy implementation, but there, the caller | ||||
| 	// instead of the callee handles this case. | ||||
| 	if len(src) < minNonLiteralBlockSize { | ||||
| 		// We do not fill the token table. | ||||
| 		// This will be picked up by caller. | ||||
| 		dst.n = uint16(len(src)) | ||||
| 		return | ||||
| 	} | ||||
|  | ||||
| 	// Initialize the hash table. | ||||
| 	// | ||||
| 	// The table element type is uint16, as s < sLimit and sLimit < len(src) | ||||
| 	// and len(src) <= maxStoreBlockSize and maxStoreBlockSize == 65535. | ||||
| 	var table [tableSize]uint16 | ||||
|  | ||||
| 	// sLimit is when to stop looking for offset/length copies. The inputMargin | ||||
| 	// lets us use a fast path for emitLiteral in the main loop, while we are | ||||
| 	// looking for copies. | ||||
| 	sLimit := len(src) - inputMargin | ||||
|  | ||||
| 	// nextEmit is where in src the next emitLiteral should start from. | ||||
| 	nextEmit := 0 | ||||
|  | ||||
| 	// The encoded form must start with a literal, as there are no previous | ||||
| 	// bytes to copy, so we start looking for hash matches at s == 1. | ||||
| 	s := 1 | ||||
| 	nextHash := hash(load32(src, s)) | ||||
|  | ||||
| 	for { | ||||
| 		// Copied from the C++ snappy implementation: | ||||
| 		// | ||||
| 		// Heuristic match skipping: If 32 bytes are scanned with no matches | ||||
| 		// found, start looking only at every other byte. If 32 more bytes are | ||||
| 		// scanned (or skipped), look at every third byte, etc.. When a match | ||||
| 		// is found, immediately go back to looking at every byte. This is a | ||||
| 		// small loss (~5% performance, ~0.1% density) for compressible data | ||||
| 		// due to more bookkeeping, but for non-compressible data (such as | ||||
| 		// JPEG) it's a huge win since the compressor quickly "realizes" the | ||||
| 		// data is incompressible and doesn't bother looking for matches | ||||
| 		// everywhere. | ||||
| 		// | ||||
| 		// The "skip" variable keeps track of how many bytes there are since | ||||
| 		// the last match; dividing it by 32 (ie. right-shifting by five) gives | ||||
| 		// the number of bytes to move ahead for each iteration. | ||||
| 		skip := 32 | ||||
|  | ||||
| 		nextS := s | ||||
| 		candidate := 0 | ||||
| 		for { | ||||
| 			s = nextS | ||||
| 			bytesBetweenHashLookups := skip >> 5 | ||||
| 			nextS = s + bytesBetweenHashLookups | ||||
| 			skip += bytesBetweenHashLookups | ||||
| 			if nextS > sLimit { | ||||
| 				goto emitRemainder | ||||
| 			} | ||||
| 			candidate = int(table[nextHash&tableMask]) | ||||
| 			table[nextHash&tableMask] = uint16(s) | ||||
| 			nextHash = hash(load32(src, nextS)) | ||||
| 			// TODO: < should be <=, and add a test for that. | ||||
| 			if s-candidate < maxMatchOffset && load32(src, s) == load32(src, candidate) { | ||||
| 				break | ||||
| 			} | ||||
| 		} | ||||
|  | ||||
| 		// A 4-byte match has been found. We'll later see if more than 4 bytes | ||||
| 		// match. But, prior to the match, src[nextEmit:s] are unmatched. Emit | ||||
| 		// them as literal bytes. | ||||
| 		emitLiteral(dst, src[nextEmit:s]) | ||||
|  | ||||
| 		// Call emitCopy, and then see if another emitCopy could be our next | ||||
| 		// move. Repeat until we find no match for the input immediately after | ||||
| 		// what was consumed by the last emitCopy call. | ||||
| 		// | ||||
| 		// If we exit this loop normally then we need to call emitLiteral next, | ||||
| 		// though we don't yet know how big the literal will be. We handle that | ||||
| 		// by proceeding to the next iteration of the main loop. We also can | ||||
| 		// exit this loop via goto if we get close to exhausting the input. | ||||
| 		for { | ||||
| 			// Invariant: we have a 4-byte match at s, and no need to emit any | ||||
| 			// literal bytes prior to s. | ||||
| 			base := s | ||||
|  | ||||
| 			// Extend the 4-byte match as long as possible. | ||||
| 			// | ||||
| 			// This is an inlined version of Snappy's: | ||||
| 			//	s = extendMatch(src, candidate+4, s+4) | ||||
| 			s += 4 | ||||
| 			s1 := base + maxMatchLength | ||||
| 			if s1 > len(src) { | ||||
| 				s1 = len(src) | ||||
| 			} | ||||
| 			a := src[s:s1] | ||||
| 			b := src[candidate+4:] | ||||
| 			b = b[:len(a)] | ||||
| 			l := len(a) | ||||
| 			for i := range a { | ||||
| 				if a[i] != b[i] { | ||||
| 					l = i | ||||
| 					break | ||||
| 				} | ||||
| 			} | ||||
| 			s += l | ||||
|  | ||||
| 			// matchToken is flate's equivalent of Snappy's emitCopy. | ||||
| 			dst.tokens[dst.n] = matchToken(uint32(s-base-baseMatchLength), uint32(base-candidate-baseMatchOffset)) | ||||
| 			dst.n++ | ||||
| 			nextEmit = s | ||||
| 			if s >= sLimit { | ||||
| 				goto emitRemainder | ||||
| 			} | ||||
|  | ||||
| 			// We could immediately start working at s now, but to improve | ||||
| 			// compression we first update the hash table at s-1 and at s. If | ||||
| 			// another emitCopy is not our next move, also calculate nextHash | ||||
| 			// at s+1. At least on GOARCH=amd64, these three hash calculations | ||||
| 			// are faster as one load64 call (with some shifts) instead of | ||||
| 			// three load32 calls. | ||||
| 			x := load64(src, s-1) | ||||
| 			prevHash := hash(uint32(x >> 0)) | ||||
| 			table[prevHash&tableMask] = uint16(s - 1) | ||||
| 			currHash := hash(uint32(x >> 8)) | ||||
| 			candidate = int(table[currHash&tableMask]) | ||||
| 			table[currHash&tableMask] = uint16(s) | ||||
| 			// TODO: >= should be >, and add a test for that. | ||||
| 			if s-candidate >= maxMatchOffset || uint32(x>>8) != load32(src, candidate) { | ||||
| 				nextHash = hash(uint32(x >> 16)) | ||||
| 				s++ | ||||
| 				break | ||||
| 			} | ||||
| 		} | ||||
| 	} | ||||
|  | ||||
| emitRemainder: | ||||
| 	if nextEmit < len(src) { | ||||
| 		emitLiteral(dst, src[nextEmit:]) | ||||
| 	} | ||||
| } | ||||
|  | ||||
| type tableEntry struct { | ||||
| 	val    uint32 | ||||
| 	offset int32 | ||||
| } | ||||
|  | ||||
| func load3232(b []byte, i int32) uint32 { | ||||
| 	b = b[i : i+4 : len(b)] // Help the compiler eliminate bounds checks on the next line. | ||||
| 	return uint32(b[0]) | uint32(b[1])<<8 | uint32(b[2])<<16 | uint32(b[3])<<24 | ||||
| } | ||||
|  | ||||
| func load6432(b []byte, i int32) uint64 { | ||||
| 	b = b[i : i+8 : len(b)] // Help the compiler eliminate bounds checks on the next line. | ||||
| 	return uint64(b[0]) | uint64(b[1])<<8 | uint64(b[2])<<16 | uint64(b[3])<<24 | | ||||
| 		uint64(b[4])<<32 | uint64(b[5])<<40 | uint64(b[6])<<48 | uint64(b[7])<<56 | ||||
| } | ||||
|  | ||||
| // snappyGen maintains the table for matches, | ||||
| // and the previous byte block for level 2. | ||||
| // This is the generic implementation. | ||||
| type snappyGen struct { | ||||
| 	prev []byte | ||||
| 	cur  int32 | ||||
| } | ||||
|  | ||||
| // snappyGen maintains the table for matches, | ||||
| // and the previous byte block for level 2. | ||||
| // This is the generic implementation. | ||||
| type snappyL2 struct { | ||||
| 	snappyGen | ||||
| 	table [tableSize]tableEntry | ||||
| } | ||||
|  | ||||
| // EncodeL2 uses a similar algorithm to level 1, but is capable | ||||
| // of matching across blocks giving better compression at a small slowdown. | ||||
| func (e *snappyL2) Encode(dst *tokens, src []byte) { | ||||
| 	const ( | ||||
| 		inputMargin            = 16 - 1 | ||||
| 		minNonLiteralBlockSize = 1 + 1 + inputMargin | ||||
| 	) | ||||
|  | ||||
| 	// Ensure that e.cur doesn't wrap, mainly an issue on 32 bits. | ||||
| 	if e.cur > 1<<30 { | ||||
| 		for i := range e.table { | ||||
| 			e.table[i] = tableEntry{} | ||||
| 		} | ||||
| 		e.cur = maxStoreBlockSize | ||||
| 	} | ||||
|  | ||||
| 	// This check isn't in the Snappy implementation, but there, the caller | ||||
| 	// instead of the callee handles this case. | ||||
| 	if len(src) < minNonLiteralBlockSize { | ||||
| 		// We do not fill the token table. | ||||
| 		// This will be picked up by caller. | ||||
| 		dst.n = uint16(len(src)) | ||||
| 		e.cur += maxStoreBlockSize | ||||
| 		e.prev = e.prev[:0] | ||||
| 		return | ||||
| 	} | ||||
|  | ||||
| 	// sLimit is when to stop looking for offset/length copies. The inputMargin | ||||
| 	// lets us use a fast path for emitLiteral in the main loop, while we are | ||||
| 	// looking for copies. | ||||
| 	sLimit := int32(len(src) - inputMargin) | ||||
|  | ||||
| 	// nextEmit is where in src the next emitLiteral should start from. | ||||
| 	nextEmit := int32(0) | ||||
| 	s := int32(0) | ||||
| 	cv := load3232(src, s) | ||||
| 	nextHash := hash(cv) | ||||
|  | ||||
| 	for { | ||||
| 		// Copied from the C++ snappy implementation: | ||||
| 		// | ||||
| 		// Heuristic match skipping: If 32 bytes are scanned with no matches | ||||
| 		// found, start looking only at every other byte. If 32 more bytes are | ||||
| 		// scanned (or skipped), look at every third byte, etc.. When a match | ||||
| 		// is found, immediately go back to looking at every byte. This is a | ||||
| 		// small loss (~5% performance, ~0.1% density) for compressible data | ||||
| 		// due to more bookkeeping, but for non-compressible data (such as | ||||
| 		// JPEG) it's a huge win since the compressor quickly "realizes" the | ||||
| 		// data is incompressible and doesn't bother looking for matches | ||||
| 		// everywhere. | ||||
| 		// | ||||
| 		// The "skip" variable keeps track of how many bytes there are since | ||||
| 		// the last match; dividing it by 32 (ie. right-shifting by five) gives | ||||
| 		// the number of bytes to move ahead for each iteration. | ||||
| 		skip := int32(32) | ||||
|  | ||||
| 		nextS := s | ||||
| 		var candidate tableEntry | ||||
| 		for { | ||||
| 			s = nextS | ||||
| 			bytesBetweenHashLookups := skip >> 5 | ||||
| 			nextS = s + bytesBetweenHashLookups | ||||
| 			skip += bytesBetweenHashLookups | ||||
| 			if nextS > sLimit { | ||||
| 				goto emitRemainder | ||||
| 			} | ||||
| 			candidate = e.table[nextHash&tableMask] | ||||
| 			now := load3232(src, nextS) | ||||
| 			e.table[nextHash&tableMask] = tableEntry{offset: s + e.cur, val: cv} | ||||
| 			nextHash = hash(now) | ||||
|  | ||||
| 			offset := s - (candidate.offset - e.cur) | ||||
| 			if offset >= maxMatchOffset || cv != candidate.val { | ||||
| 				// Out of range or not matched. | ||||
| 				cv = now | ||||
| 				continue | ||||
| 			} | ||||
| 			break | ||||
| 		} | ||||
|  | ||||
| 		// A 4-byte match has been found. We'll later see if more than 4 bytes | ||||
| 		// match. But, prior to the match, src[nextEmit:s] are unmatched. Emit | ||||
| 		// them as literal bytes. | ||||
| 		emitLiteral(dst, src[nextEmit:s]) | ||||
|  | ||||
| 		// Call emitCopy, and then see if another emitCopy could be our next | ||||
| 		// move. Repeat until we find no match for the input immediately after | ||||
| 		// what was consumed by the last emitCopy call. | ||||
| 		// | ||||
| 		// If we exit this loop normally then we need to call emitLiteral next, | ||||
| 		// though we don't yet know how big the literal will be. We handle that | ||||
| 		// by proceeding to the next iteration of the main loop. We also can | ||||
| 		// exit this loop via goto if we get close to exhausting the input. | ||||
| 		for { | ||||
| 			// Invariant: we have a 4-byte match at s, and no need to emit any | ||||
| 			// literal bytes prior to s. | ||||
|  | ||||
| 			// Extend the 4-byte match as long as possible. | ||||
| 			// | ||||
| 			s += 4 | ||||
| 			t := candidate.offset - e.cur + 4 | ||||
| 			l := e.matchlen(s, t, src) | ||||
|  | ||||
| 			// matchToken is flate's equivalent of Snappy's emitCopy. (length,offset) | ||||
| 			dst.tokens[dst.n] = matchToken(uint32(l+4-baseMatchLength), uint32(s-t-baseMatchOffset)) | ||||
| 			dst.n++ | ||||
| 			s += l | ||||
| 			nextEmit = s | ||||
| 			if s >= sLimit { | ||||
| 				goto emitRemainder | ||||
| 			} | ||||
|  | ||||
| 			// We could immediately start working at s now, but to improve | ||||
| 			// compression we first update the hash table at s-1 and at s. If | ||||
| 			// another emitCopy is not our next move, also calculate nextHash | ||||
| 			// at s+1. At least on GOARCH=amd64, these three hash calculations | ||||
| 			// are faster as one load64 call (with some shifts) instead of | ||||
| 			// three load32 calls. | ||||
| 			x := load6432(src, s-1) | ||||
| 			prevHash := hash(uint32(x)) | ||||
| 			e.table[prevHash&tableMask] = tableEntry{offset: e.cur + s - 1, val: uint32(x)} | ||||
| 			x >>= 8 | ||||
| 			currHash := hash(uint32(x)) | ||||
| 			candidate = e.table[currHash&tableMask] | ||||
| 			e.table[currHash&tableMask] = tableEntry{offset: e.cur + s, val: uint32(x)} | ||||
|  | ||||
| 			offset := s - (candidate.offset - e.cur) | ||||
| 			if offset >= maxMatchOffset || uint32(x) != candidate.val { | ||||
| 				cv = uint32(x >> 8) | ||||
| 				nextHash = hash(cv) | ||||
| 				s++ | ||||
| 				break | ||||
| 			} | ||||
| 		} | ||||
| 	} | ||||
|  | ||||
| emitRemainder: | ||||
| 	if int(nextEmit) < len(src) { | ||||
| 		emitLiteral(dst, src[nextEmit:]) | ||||
| 	} | ||||
| 	e.cur += int32(len(src)) | ||||
| 	e.prev = e.prev[:len(src)] | ||||
| 	copy(e.prev, src) | ||||
| } | ||||
|  | ||||
| type tableEntryPrev struct { | ||||
| 	Cur  tableEntry | ||||
| 	Prev tableEntry | ||||
| } | ||||
|  | ||||
| // snappyL3 | ||||
| type snappyL3 struct { | ||||
| 	snappyGen | ||||
| 	table [tableSize]tableEntryPrev | ||||
| } | ||||
|  | ||||
| // Encode uses a similar algorithm to level 2, will check up to two candidates. | ||||
| func (e *snappyL3) Encode(dst *tokens, src []byte) { | ||||
| 	const ( | ||||
| 		inputMargin            = 16 - 1 | ||||
| 		minNonLiteralBlockSize = 1 + 1 + inputMargin | ||||
| 	) | ||||
|  | ||||
| 	// Ensure that e.cur doesn't wrap, mainly an issue on 32 bits. | ||||
| 	if e.cur > 1<<30 { | ||||
| 		for i := range e.table { | ||||
| 			e.table[i] = tableEntryPrev{} | ||||
| 		} | ||||
| 		e.cur = maxStoreBlockSize | ||||
| 	} | ||||
|  | ||||
| 	// This check isn't in the Snappy implementation, but there, the caller | ||||
| 	// instead of the callee handles this case. | ||||
| 	if len(src) < minNonLiteralBlockSize { | ||||
| 		// We do not fill the token table. | ||||
| 		// This will be picked up by caller. | ||||
| 		dst.n = uint16(len(src)) | ||||
| 		e.cur += maxStoreBlockSize | ||||
| 		e.prev = e.prev[:0] | ||||
| 		return | ||||
| 	} | ||||
|  | ||||
| 	// sLimit is when to stop looking for offset/length copies. The inputMargin | ||||
| 	// lets us use a fast path for emitLiteral in the main loop, while we are | ||||
| 	// looking for copies. | ||||
| 	sLimit := int32(len(src) - inputMargin) | ||||
|  | ||||
| 	// nextEmit is where in src the next emitLiteral should start from. | ||||
| 	nextEmit := int32(0) | ||||
| 	s := int32(0) | ||||
| 	cv := load3232(src, s) | ||||
| 	nextHash := hash(cv) | ||||
|  | ||||
| 	for { | ||||
| 		// Copied from the C++ snappy implementation: | ||||
| 		// | ||||
| 		// Heuristic match skipping: If 32 bytes are scanned with no matches | ||||
| 		// found, start looking only at every other byte. If 32 more bytes are | ||||
| 		// scanned (or skipped), look at every third byte, etc.. When a match | ||||
| 		// is found, immediately go back to looking at every byte. This is a | ||||
| 		// small loss (~5% performance, ~0.1% density) for compressible data | ||||
| 		// due to more bookkeeping, but for non-compressible data (such as | ||||
| 		// JPEG) it's a huge win since the compressor quickly "realizes" the | ||||
| 		// data is incompressible and doesn't bother looking for matches | ||||
| 		// everywhere. | ||||
| 		// | ||||
| 		// The "skip" variable keeps track of how many bytes there are since | ||||
| 		// the last match; dividing it by 32 (ie. right-shifting by five) gives | ||||
| 		// the number of bytes to move ahead for each iteration. | ||||
| 		skip := int32(32) | ||||
|  | ||||
| 		nextS := s | ||||
| 		var candidate tableEntry | ||||
| 		for { | ||||
| 			s = nextS | ||||
| 			bytesBetweenHashLookups := skip >> 5 | ||||
| 			nextS = s + bytesBetweenHashLookups | ||||
| 			skip += bytesBetweenHashLookups | ||||
| 			if nextS > sLimit { | ||||
| 				goto emitRemainder | ||||
| 			} | ||||
| 			candidates := e.table[nextHash&tableMask] | ||||
| 			now := load3232(src, nextS) | ||||
| 			e.table[nextHash&tableMask] = tableEntryPrev{Prev: candidates.Cur, Cur: tableEntry{offset: s + e.cur, val: cv}} | ||||
| 			nextHash = hash(now) | ||||
|  | ||||
| 			// Check both candidates | ||||
| 			candidate = candidates.Cur | ||||
| 			if cv == candidate.val { | ||||
| 				offset := s - (candidate.offset - e.cur) | ||||
| 				if offset < maxMatchOffset { | ||||
| 					break | ||||
| 				} | ||||
| 			} else { | ||||
| 				// We only check if value mismatches. | ||||
| 				// Offset will always be invalid in other cases. | ||||
| 				candidate = candidates.Prev | ||||
| 				if cv == candidate.val { | ||||
| 					offset := s - (candidate.offset - e.cur) | ||||
| 					if offset < maxMatchOffset { | ||||
| 						break | ||||
| 					} | ||||
| 				} | ||||
| 			} | ||||
| 			cv = now | ||||
| 		} | ||||
|  | ||||
| 		// A 4-byte match has been found. We'll later see if more than 4 bytes | ||||
| 		// match. But, prior to the match, src[nextEmit:s] are unmatched. Emit | ||||
| 		// them as literal bytes. | ||||
| 		emitLiteral(dst, src[nextEmit:s]) | ||||
|  | ||||
| 		// Call emitCopy, and then see if another emitCopy could be our next | ||||
| 		// move. Repeat until we find no match for the input immediately after | ||||
| 		// what was consumed by the last emitCopy call. | ||||
| 		// | ||||
| 		// If we exit this loop normally then we need to call emitLiteral next, | ||||
| 		// though we don't yet know how big the literal will be. We handle that | ||||
| 		// by proceeding to the next iteration of the main loop. We also can | ||||
| 		// exit this loop via goto if we get close to exhausting the input. | ||||
| 		for { | ||||
| 			// Invariant: we have a 4-byte match at s, and no need to emit any | ||||
| 			// literal bytes prior to s. | ||||
|  | ||||
| 			// Extend the 4-byte match as long as possible. | ||||
| 			// | ||||
| 			s += 4 | ||||
| 			t := candidate.offset - e.cur + 4 | ||||
| 			l := e.matchlen(s, t, src) | ||||
|  | ||||
| 			// matchToken is flate's equivalent of Snappy's emitCopy. (length,offset) | ||||
| 			dst.tokens[dst.n] = matchToken(uint32(l+4-baseMatchLength), uint32(s-t-baseMatchOffset)) | ||||
| 			dst.n++ | ||||
| 			s += l | ||||
| 			nextEmit = s | ||||
| 			if s >= sLimit { | ||||
| 				goto emitRemainder | ||||
| 			} | ||||
|  | ||||
| 			// We could immediately start working at s now, but to improve | ||||
| 			// compression we first update the hash table at s-2, s-1 and at s. If | ||||
| 			// another emitCopy is not our next move, also calculate nextHash | ||||
| 			// at s+1. At least on GOARCH=amd64, these three hash calculations | ||||
| 			// are faster as one load64 call (with some shifts) instead of | ||||
| 			// three load32 calls. | ||||
| 			x := load6432(src, s-2) | ||||
| 			prevHash := hash(uint32(x)) | ||||
|  | ||||
| 			e.table[prevHash&tableMask] = tableEntryPrev{ | ||||
| 				Prev: e.table[prevHash&tableMask].Cur, | ||||
| 				Cur:  tableEntry{offset: e.cur + s - 2, val: uint32(x)}, | ||||
| 			} | ||||
| 			x >>= 8 | ||||
| 			prevHash = hash(uint32(x)) | ||||
|  | ||||
| 			e.table[prevHash&tableMask] = tableEntryPrev{ | ||||
| 				Prev: e.table[prevHash&tableMask].Cur, | ||||
| 				Cur:  tableEntry{offset: e.cur + s - 1, val: uint32(x)}, | ||||
| 			} | ||||
| 			x >>= 8 | ||||
| 			currHash := hash(uint32(x)) | ||||
| 			candidates := e.table[currHash&tableMask] | ||||
| 			cv = uint32(x) | ||||
| 			e.table[currHash&tableMask] = tableEntryPrev{ | ||||
| 				Prev: candidates.Cur, | ||||
| 				Cur:  tableEntry{offset: s + e.cur, val: cv}, | ||||
| 			} | ||||
|  | ||||
| 			// Check both candidates | ||||
| 			candidate = candidates.Cur | ||||
| 			if cv == candidate.val { | ||||
| 				offset := s - (candidate.offset - e.cur) | ||||
| 				if offset < maxMatchOffset { | ||||
| 					continue | ||||
| 				} | ||||
| 			} else { | ||||
| 				// We only check if value mismatches. | ||||
| 				// Offset will always be invalid in other cases. | ||||
| 				candidate = candidates.Prev | ||||
| 				if cv == candidate.val { | ||||
| 					offset := s - (candidate.offset - e.cur) | ||||
| 					if offset < maxMatchOffset { | ||||
| 						continue | ||||
| 					} | ||||
| 				} | ||||
| 			} | ||||
| 			cv = uint32(x >> 8) | ||||
| 			nextHash = hash(cv) | ||||
| 			s++ | ||||
| 			break | ||||
| 		} | ||||
| 	} | ||||
|  | ||||
| emitRemainder: | ||||
| 	if int(nextEmit) < len(src) { | ||||
| 		emitLiteral(dst, src[nextEmit:]) | ||||
| 	} | ||||
| 	e.cur += int32(len(src)) | ||||
| 	e.prev = e.prev[:len(src)] | ||||
| 	copy(e.prev, src) | ||||
| } | ||||
|  | ||||
| // snappyL4 | ||||
| type snappyL4 struct { | ||||
| 	snappyL3 | ||||
| } | ||||
|  | ||||
| // Encode uses a similar algorithm to level 3, | ||||
| // but will check up to two candidates if first isn't long enough. | ||||
| func (e *snappyL4) Encode(dst *tokens, src []byte) { | ||||
| 	const ( | ||||
| 		inputMargin            = 16 - 1 | ||||
| 		minNonLiteralBlockSize = 1 + 1 + inputMargin | ||||
| 		matchLenGood           = 12 | ||||
| 	) | ||||
|  | ||||
| 	// Ensure that e.cur doesn't wrap, mainly an issue on 32 bits. | ||||
| 	if e.cur > 1<<30 { | ||||
| 		for i := range e.table { | ||||
| 			e.table[i] = tableEntryPrev{} | ||||
| 		} | ||||
| 		e.cur = maxStoreBlockSize | ||||
| 	} | ||||
|  | ||||
| 	// This check isn't in the Snappy implementation, but there, the caller | ||||
| 	// instead of the callee handles this case. | ||||
| 	if len(src) < minNonLiteralBlockSize { | ||||
| 		// We do not fill the token table. | ||||
| 		// This will be picked up by caller. | ||||
| 		dst.n = uint16(len(src)) | ||||
| 		e.cur += maxStoreBlockSize | ||||
| 		e.prev = e.prev[:0] | ||||
| 		return | ||||
| 	} | ||||
|  | ||||
| 	// sLimit is when to stop looking for offset/length copies. The inputMargin | ||||
| 	// lets us use a fast path for emitLiteral in the main loop, while we are | ||||
| 	// looking for copies. | ||||
| 	sLimit := int32(len(src) - inputMargin) | ||||
|  | ||||
| 	// nextEmit is where in src the next emitLiteral should start from. | ||||
| 	nextEmit := int32(0) | ||||
| 	s := int32(0) | ||||
| 	cv := load3232(src, s) | ||||
| 	nextHash := hash(cv) | ||||
|  | ||||
| 	for { | ||||
| 		// Copied from the C++ snappy implementation: | ||||
| 		// | ||||
| 		// Heuristic match skipping: If 32 bytes are scanned with no matches | ||||
| 		// found, start looking only at every other byte. If 32 more bytes are | ||||
| 		// scanned (or skipped), look at every third byte, etc.. When a match | ||||
| 		// is found, immediately go back to looking at every byte. This is a | ||||
| 		// small loss (~5% performance, ~0.1% density) for compressible data | ||||
| 		// due to more bookkeeping, but for non-compressible data (such as | ||||
| 		// JPEG) it's a huge win since the compressor quickly "realizes" the | ||||
| 		// data is incompressible and doesn't bother looking for matches | ||||
| 		// everywhere. | ||||
| 		// | ||||
| 		// The "skip" variable keeps track of how many bytes there are since | ||||
| 		// the last match; dividing it by 32 (ie. right-shifting by five) gives | ||||
| 		// the number of bytes to move ahead for each iteration. | ||||
| 		skip := int32(32) | ||||
|  | ||||
| 		nextS := s | ||||
| 		var candidate tableEntry | ||||
| 		var candidateAlt tableEntry | ||||
| 		for { | ||||
| 			s = nextS | ||||
| 			bytesBetweenHashLookups := skip >> 5 | ||||
| 			nextS = s + bytesBetweenHashLookups | ||||
| 			skip += bytesBetweenHashLookups | ||||
| 			if nextS > sLimit { | ||||
| 				goto emitRemainder | ||||
| 			} | ||||
| 			candidates := e.table[nextHash&tableMask] | ||||
| 			now := load3232(src, nextS) | ||||
| 			e.table[nextHash&tableMask] = tableEntryPrev{Prev: candidates.Cur, Cur: tableEntry{offset: s + e.cur, val: cv}} | ||||
| 			nextHash = hash(now) | ||||
|  | ||||
| 			// Check both candidates | ||||
| 			candidate = candidates.Cur | ||||
| 			if cv == candidate.val { | ||||
| 				offset := s - (candidate.offset - e.cur) | ||||
| 				if offset < maxMatchOffset { | ||||
| 					offset = s - (candidates.Prev.offset - e.cur) | ||||
| 					if cv == candidates.Prev.val && offset < maxMatchOffset { | ||||
| 						candidateAlt = candidates.Prev | ||||
| 					} | ||||
| 					break | ||||
| 				} | ||||
| 			} else { | ||||
| 				// We only check if value mismatches. | ||||
| 				// Offset will always be invalid in other cases. | ||||
| 				candidate = candidates.Prev | ||||
| 				if cv == candidate.val { | ||||
| 					offset := s - (candidate.offset - e.cur) | ||||
| 					if offset < maxMatchOffset { | ||||
| 						break | ||||
| 					} | ||||
| 				} | ||||
| 			} | ||||
| 			cv = now | ||||
| 		} | ||||
|  | ||||
| 		// A 4-byte match has been found. We'll later see if more than 4 bytes | ||||
| 		// match. But, prior to the match, src[nextEmit:s] are unmatched. Emit | ||||
| 		// them as literal bytes. | ||||
| 		emitLiteral(dst, src[nextEmit:s]) | ||||
|  | ||||
| 		// Call emitCopy, and then see if another emitCopy could be our next | ||||
| 		// move. Repeat until we find no match for the input immediately after | ||||
| 		// what was consumed by the last emitCopy call. | ||||
| 		// | ||||
| 		// If we exit this loop normally then we need to call emitLiteral next, | ||||
| 		// though we don't yet know how big the literal will be. We handle that | ||||
| 		// by proceeding to the next iteration of the main loop. We also can | ||||
| 		// exit this loop via goto if we get close to exhausting the input. | ||||
| 		for { | ||||
| 			// Invariant: we have a 4-byte match at s, and no need to emit any | ||||
| 			// literal bytes prior to s. | ||||
|  | ||||
| 			// Extend the 4-byte match as long as possible. | ||||
| 			// | ||||
| 			s += 4 | ||||
| 			t := candidate.offset - e.cur + 4 | ||||
| 			l := e.matchlen(s, t, src) | ||||
| 			// Try alternative candidate if match length < matchLenGood. | ||||
| 			if l < matchLenGood-4 && candidateAlt.offset != 0 { | ||||
| 				t2 := candidateAlt.offset - e.cur + 4 | ||||
| 				l2 := e.matchlen(s, t2, src) | ||||
| 				if l2 > l { | ||||
| 					l = l2 | ||||
| 					t = t2 | ||||
| 				} | ||||
| 			} | ||||
| 			// matchToken is flate's equivalent of Snappy's emitCopy. (length,offset) | ||||
| 			dst.tokens[dst.n] = matchToken(uint32(l+4-baseMatchLength), uint32(s-t-baseMatchOffset)) | ||||
| 			dst.n++ | ||||
| 			s += l | ||||
| 			nextEmit = s | ||||
| 			if s >= sLimit { | ||||
| 				goto emitRemainder | ||||
| 			} | ||||
|  | ||||
| 			// We could immediately start working at s now, but to improve | ||||
| 			// compression we first update the hash table at s-2, s-1 and at s. If | ||||
| 			// another emitCopy is not our next move, also calculate nextHash | ||||
| 			// at s+1. At least on GOARCH=amd64, these three hash calculations | ||||
| 			// are faster as one load64 call (with some shifts) instead of | ||||
| 			// three load32 calls. | ||||
| 			x := load6432(src, s-2) | ||||
| 			prevHash := hash(uint32(x)) | ||||
|  | ||||
| 			e.table[prevHash&tableMask] = tableEntryPrev{ | ||||
| 				Prev: e.table[prevHash&tableMask].Cur, | ||||
| 				Cur:  tableEntry{offset: e.cur + s - 2, val: uint32(x)}, | ||||
| 			} | ||||
| 			x >>= 8 | ||||
| 			prevHash = hash(uint32(x)) | ||||
|  | ||||
| 			e.table[prevHash&tableMask] = tableEntryPrev{ | ||||
| 				Prev: e.table[prevHash&tableMask].Cur, | ||||
| 				Cur:  tableEntry{offset: e.cur + s - 1, val: uint32(x)}, | ||||
| 			} | ||||
| 			x >>= 8 | ||||
| 			currHash := hash(uint32(x)) | ||||
| 			candidates := e.table[currHash&tableMask] | ||||
| 			cv = uint32(x) | ||||
| 			e.table[currHash&tableMask] = tableEntryPrev{ | ||||
| 				Prev: candidates.Cur, | ||||
| 				Cur:  tableEntry{offset: s + e.cur, val: cv}, | ||||
| 			} | ||||
|  | ||||
| 			// Check both candidates | ||||
| 			candidate = candidates.Cur | ||||
| 			candidateAlt = tableEntry{} | ||||
| 			if cv == candidate.val { | ||||
| 				offset := s - (candidate.offset - e.cur) | ||||
| 				if offset < maxMatchOffset { | ||||
| 					offset = s - (candidates.Prev.offset - e.cur) | ||||
| 					if cv == candidates.Prev.val && offset < maxMatchOffset { | ||||
| 						candidateAlt = candidates.Prev | ||||
| 					} | ||||
| 					continue | ||||
| 				} | ||||
| 			} else { | ||||
| 				// We only check if value mismatches. | ||||
| 				// Offset will always be invalid in other cases. | ||||
| 				candidate = candidates.Prev | ||||
| 				if cv == candidate.val { | ||||
| 					offset := s - (candidate.offset - e.cur) | ||||
| 					if offset < maxMatchOffset { | ||||
| 						continue | ||||
| 					} | ||||
| 				} | ||||
| 			} | ||||
| 			cv = uint32(x >> 8) | ||||
| 			nextHash = hash(cv) | ||||
| 			s++ | ||||
| 			break | ||||
| 		} | ||||
| 	} | ||||
|  | ||||
| emitRemainder: | ||||
| 	if int(nextEmit) < len(src) { | ||||
| 		emitLiteral(dst, src[nextEmit:]) | ||||
| 	} | ||||
| 	e.cur += int32(len(src)) | ||||
| 	e.prev = e.prev[:len(src)] | ||||
| 	copy(e.prev, src) | ||||
| } | ||||
|  | ||||
| func (e *snappyGen) matchlen(s, t int32, src []byte) int32 { | ||||
| 	s1 := int(s) + maxMatchLength - 4 | ||||
| 	if s1 > len(src) { | ||||
| 		s1 = len(src) | ||||
| 	} | ||||
|  | ||||
| 	// If we are inside the current block | ||||
| 	if t >= 0 { | ||||
| 		b := src[t:] | ||||
| 		a := src[s:s1] | ||||
| 		b = b[:len(a)] | ||||
| 		// Extend the match to be as long as possible. | ||||
| 		for i := range a { | ||||
| 			if a[i] != b[i] { | ||||
| 				return int32(i) | ||||
| 			} | ||||
| 		} | ||||
| 		return int32(len(a)) | ||||
| 	} | ||||
|  | ||||
| 	// We found a match in the previous block. | ||||
| 	tp := int32(len(e.prev)) + t | ||||
| 	if tp < 0 { | ||||
| 		return 0 | ||||
| 	} | ||||
|  | ||||
| 	// Extend the match to be as long as possible. | ||||
| 	a := src[s:s1] | ||||
| 	b := e.prev[tp:] | ||||
| 	if len(b) > len(a) { | ||||
| 		b = b[:len(a)] | ||||
| 	} | ||||
| 	a = a[:len(b)] | ||||
| 	for i := range b { | ||||
| 		if a[i] != b[i] { | ||||
| 			return int32(i) | ||||
| 		} | ||||
| 	} | ||||
| 	n := int32(len(b)) | ||||
| 	a = src[s+n : s1] | ||||
| 	b = src[:len(a)] | ||||
| 	for i := range a { | ||||
| 		if a[i] != b[i] { | ||||
| 			return int32(i) + n | ||||
| 		} | ||||
| 	} | ||||
| 	return int32(len(a)) + n | ||||
| } | ||||
|  | ||||
| // Reset the encoding table. | ||||
| func (e *snappyGen) Reset() { | ||||
| 	e.prev = e.prev[:0] | ||||
| 	e.cur += maxMatchOffset + 1 | ||||
| } | ||||
		Reference in New Issue
	
	Block a user