mirror of
				https://github.com/go-gitea/gitea.git
				synced 2025-10-29 10:57:44 +09:00 
			
		
		
		
	Switch to keybase go-crypto (for some elliptic curve key) + test (#1925)
* Switch to keybase go-crypto (for some elliptic curve key) + test
* Use assert.NoError 
and add a little more context to failing test description
* Use assert.(No)Error everywhere 🌈
and assert.Error in place of .Nil/.NotNil
			
			
This commit is contained in:
		
				
					committed by
					
						 Lunny Xiao
						Lunny Xiao
					
				
			
			
				
	
			
			
			
						parent
						
							5e92b82ac6
						
					
				
				
					commit
					274149dd14
				
			
							
								
								
									
										325
									
								
								vendor/github.com/keybase/go-crypto/rsa/pkcs1v15.go
									
									
									
										generated
									
									
										vendored
									
									
										Normal file
									
								
							
							
						
						
									
										325
									
								
								vendor/github.com/keybase/go-crypto/rsa/pkcs1v15.go
									
									
									
										generated
									
									
										vendored
									
									
										Normal file
									
								
							| @@ -0,0 +1,325 @@ | ||||
| // Copyright 2009 The Go Authors. All rights reserved. | ||||
| // Use of this source code is governed by a BSD-style | ||||
| // license that can be found in the LICENSE file. | ||||
|  | ||||
| package rsa | ||||
|  | ||||
| import ( | ||||
| 	"crypto" | ||||
| 	"crypto/subtle" | ||||
| 	"errors" | ||||
| 	"io" | ||||
| 	"math/big" | ||||
| ) | ||||
|  | ||||
| // This file implements encryption and decryption using PKCS#1 v1.5 padding. | ||||
|  | ||||
| // PKCS1v15DecrypterOpts is for passing options to PKCS#1 v1.5 decryption using | ||||
| // the crypto.Decrypter interface. | ||||
| type PKCS1v15DecryptOptions struct { | ||||
| 	// SessionKeyLen is the length of the session key that is being | ||||
| 	// decrypted. If not zero, then a padding error during decryption will | ||||
| 	// cause a random plaintext of this length to be returned rather than | ||||
| 	// an error. These alternatives happen in constant time. | ||||
| 	SessionKeyLen int | ||||
| } | ||||
|  | ||||
| // EncryptPKCS1v15 encrypts the given message with RSA and the padding scheme from PKCS#1 v1.5. | ||||
| // The message must be no longer than the length of the public modulus minus 11 bytes. | ||||
| // | ||||
| // The rand parameter is used as a source of entropy to ensure that encrypting | ||||
| // the same message twice doesn't result in the same ciphertext. | ||||
| // | ||||
| // WARNING: use of this function to encrypt plaintexts other than session keys | ||||
| // is dangerous. Use RSA OAEP in new protocols. | ||||
| func EncryptPKCS1v15(rand io.Reader, pub *PublicKey, msg []byte) (out []byte, err error) { | ||||
| 	if err := checkPub(pub); err != nil { | ||||
| 		return nil, err | ||||
| 	} | ||||
| 	k := (pub.N.BitLen() + 7) / 8 | ||||
| 	if len(msg) > k-11 { | ||||
| 		err = ErrMessageTooLong | ||||
| 		return | ||||
| 	} | ||||
|  | ||||
| 	// EM = 0x00 || 0x02 || PS || 0x00 || M | ||||
| 	em := make([]byte, k) | ||||
| 	em[1] = 2 | ||||
| 	ps, mm := em[2:len(em)-len(msg)-1], em[len(em)-len(msg):] | ||||
| 	err = nonZeroRandomBytes(ps, rand) | ||||
| 	if err != nil { | ||||
| 		return | ||||
| 	} | ||||
| 	em[len(em)-len(msg)-1] = 0 | ||||
| 	copy(mm, msg) | ||||
|  | ||||
| 	m := new(big.Int).SetBytes(em) | ||||
| 	c := encrypt(new(big.Int), pub, m) | ||||
|  | ||||
| 	copyWithLeftPad(em, c.Bytes()) | ||||
| 	out = em | ||||
| 	return | ||||
| } | ||||
|  | ||||
| // DecryptPKCS1v15 decrypts a plaintext using RSA and the padding scheme from PKCS#1 v1.5. | ||||
| // If rand != nil, it uses RSA blinding to avoid timing side-channel attacks. | ||||
| // | ||||
| // Note that whether this function returns an error or not discloses secret | ||||
| // information. If an attacker can cause this function to run repeatedly and | ||||
| // learn whether each instance returned an error then they can decrypt and | ||||
| // forge signatures as if they had the private key. See | ||||
| // DecryptPKCS1v15SessionKey for a way of solving this problem. | ||||
| func DecryptPKCS1v15(rand io.Reader, priv *PrivateKey, ciphertext []byte) (out []byte, err error) { | ||||
| 	if err := checkPub(&priv.PublicKey); err != nil { | ||||
| 		return nil, err | ||||
| 	} | ||||
| 	valid, out, index, err := decryptPKCS1v15(rand, priv, ciphertext) | ||||
| 	if err != nil { | ||||
| 		return | ||||
| 	} | ||||
| 	if valid == 0 { | ||||
| 		return nil, ErrDecryption | ||||
| 	} | ||||
| 	out = out[index:] | ||||
| 	return | ||||
| } | ||||
|  | ||||
| // DecryptPKCS1v15SessionKey decrypts a session key using RSA and the padding scheme from PKCS#1 v1.5. | ||||
| // If rand != nil, it uses RSA blinding to avoid timing side-channel attacks. | ||||
| // It returns an error if the ciphertext is the wrong length or if the | ||||
| // ciphertext is greater than the public modulus. Otherwise, no error is | ||||
| // returned. If the padding is valid, the resulting plaintext message is copied | ||||
| // into key. Otherwise, key is unchanged. These alternatives occur in constant | ||||
| // time. It is intended that the user of this function generate a random | ||||
| // session key beforehand and continue the protocol with the resulting value. | ||||
| // This will remove any possibility that an attacker can learn any information | ||||
| // about the plaintext. | ||||
| // See ``Chosen Ciphertext Attacks Against Protocols Based on the RSA | ||||
| // Encryption Standard PKCS #1'', Daniel Bleichenbacher, Advances in Cryptology | ||||
| // (Crypto '98). | ||||
| // | ||||
| // Note that if the session key is too small then it may be possible for an | ||||
| // attacker to brute-force it. If they can do that then they can learn whether | ||||
| // a random value was used (because it'll be different for the same ciphertext) | ||||
| // and thus whether the padding was correct. This defeats the point of this | ||||
| // function. Using at least a 16-byte key will protect against this attack. | ||||
| func DecryptPKCS1v15SessionKey(rand io.Reader, priv *PrivateKey, ciphertext []byte, key []byte) (err error) { | ||||
| 	if err := checkPub(&priv.PublicKey); err != nil { | ||||
| 		return err | ||||
| 	} | ||||
| 	k := (priv.N.BitLen() + 7) / 8 | ||||
| 	if k-(len(key)+3+8) < 0 { | ||||
| 		return ErrDecryption | ||||
| 	} | ||||
|  | ||||
| 	valid, em, index, err := decryptPKCS1v15(rand, priv, ciphertext) | ||||
| 	if err != nil { | ||||
| 		return | ||||
| 	} | ||||
|  | ||||
| 	if len(em) != k { | ||||
| 		// This should be impossible because decryptPKCS1v15 always | ||||
| 		// returns the full slice. | ||||
| 		return ErrDecryption | ||||
| 	} | ||||
|  | ||||
| 	valid &= subtle.ConstantTimeEq(int32(len(em)-index), int32(len(key))) | ||||
| 	subtle.ConstantTimeCopy(valid, key, em[len(em)-len(key):]) | ||||
| 	return | ||||
| } | ||||
|  | ||||
| // decryptPKCS1v15 decrypts ciphertext using priv and blinds the operation if | ||||
| // rand is not nil. It returns one or zero in valid that indicates whether the | ||||
| // plaintext was correctly structured. In either case, the plaintext is | ||||
| // returned in em so that it may be read independently of whether it was valid | ||||
| // in order to maintain constant memory access patterns. If the plaintext was | ||||
| // valid then index contains the index of the original message in em. | ||||
| func decryptPKCS1v15(rand io.Reader, priv *PrivateKey, ciphertext []byte) (valid int, em []byte, index int, err error) { | ||||
| 	k := (priv.N.BitLen() + 7) / 8 | ||||
| 	if k < 11 { | ||||
| 		err = ErrDecryption | ||||
| 		return | ||||
| 	} | ||||
|  | ||||
| 	c := new(big.Int).SetBytes(ciphertext) | ||||
| 	m, err := decrypt(rand, priv, c) | ||||
| 	if err != nil { | ||||
| 		return | ||||
| 	} | ||||
|  | ||||
| 	em = leftPad(m.Bytes(), k) | ||||
| 	firstByteIsZero := subtle.ConstantTimeByteEq(em[0], 0) | ||||
| 	secondByteIsTwo := subtle.ConstantTimeByteEq(em[1], 2) | ||||
|  | ||||
| 	// The remainder of the plaintext must be a string of non-zero random | ||||
| 	// octets, followed by a 0, followed by the message. | ||||
| 	//   lookingForIndex: 1 iff we are still looking for the zero. | ||||
| 	//   index: the offset of the first zero byte. | ||||
| 	lookingForIndex := 1 | ||||
|  | ||||
| 	for i := 2; i < len(em); i++ { | ||||
| 		equals0 := subtle.ConstantTimeByteEq(em[i], 0) | ||||
| 		index = subtle.ConstantTimeSelect(lookingForIndex&equals0, i, index) | ||||
| 		lookingForIndex = subtle.ConstantTimeSelect(equals0, 0, lookingForIndex) | ||||
| 	} | ||||
|  | ||||
| 	// The PS padding must be at least 8 bytes long, and it starts two | ||||
| 	// bytes into em. | ||||
| 	validPS := subtle.ConstantTimeLessOrEq(2+8, index) | ||||
|  | ||||
| 	valid = firstByteIsZero & secondByteIsTwo & (^lookingForIndex & 1) & validPS | ||||
| 	index = subtle.ConstantTimeSelect(valid, index+1, 0) | ||||
| 	return valid, em, index, nil | ||||
| } | ||||
|  | ||||
| // nonZeroRandomBytes fills the given slice with non-zero random octets. | ||||
| func nonZeroRandomBytes(s []byte, rand io.Reader) (err error) { | ||||
| 	_, err = io.ReadFull(rand, s) | ||||
| 	if err != nil { | ||||
| 		return | ||||
| 	} | ||||
|  | ||||
| 	for i := 0; i < len(s); i++ { | ||||
| 		for s[i] == 0 { | ||||
| 			_, err = io.ReadFull(rand, s[i:i+1]) | ||||
| 			if err != nil { | ||||
| 				return | ||||
| 			} | ||||
| 			// In tests, the PRNG may return all zeros so we do | ||||
| 			// this to break the loop. | ||||
| 			s[i] ^= 0x42 | ||||
| 		} | ||||
| 	} | ||||
|  | ||||
| 	return | ||||
| } | ||||
|  | ||||
| // These are ASN1 DER structures: | ||||
| //   DigestInfo ::= SEQUENCE { | ||||
| //     digestAlgorithm AlgorithmIdentifier, | ||||
| //     digest OCTET STRING | ||||
| //   } | ||||
| // For performance, we don't use the generic ASN1 encoder. Rather, we | ||||
| // precompute a prefix of the digest value that makes a valid ASN1 DER string | ||||
| // with the correct contents. | ||||
| var hashPrefixes = map[crypto.Hash][]byte{ | ||||
| 	crypto.MD5:       {0x30, 0x20, 0x30, 0x0c, 0x06, 0x08, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x02, 0x05, 0x05, 0x00, 0x04, 0x10}, | ||||
| 	crypto.SHA1:      {0x30, 0x21, 0x30, 0x09, 0x06, 0x05, 0x2b, 0x0e, 0x03, 0x02, 0x1a, 0x05, 0x00, 0x04, 0x14}, | ||||
| 	crypto.SHA224:    {0x30, 0x2d, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x04, 0x05, 0x00, 0x04, 0x1c}, | ||||
| 	crypto.SHA256:    {0x30, 0x31, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01, 0x05, 0x00, 0x04, 0x20}, | ||||
| 	crypto.SHA384:    {0x30, 0x41, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x02, 0x05, 0x00, 0x04, 0x30}, | ||||
| 	crypto.SHA512:    {0x30, 0x51, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x03, 0x05, 0x00, 0x04, 0x40}, | ||||
| 	crypto.MD5SHA1:   {}, // A special TLS case which doesn't use an ASN1 prefix. | ||||
| 	crypto.RIPEMD160: {0x30, 0x20, 0x30, 0x08, 0x06, 0x06, 0x28, 0xcf, 0x06, 0x03, 0x00, 0x31, 0x04, 0x14}, | ||||
| } | ||||
|  | ||||
| // SignPKCS1v15 calculates the signature of hashed using RSASSA-PKCS1-V1_5-SIGN from RSA PKCS#1 v1.5. | ||||
| // Note that hashed must be the result of hashing the input message using the | ||||
| // given hash function. If hash is zero, hashed is signed directly. This isn't | ||||
| // advisable except for interoperability. | ||||
| // | ||||
| // If rand is not nil then RSA blinding will be used to avoid timing side-channel attacks. | ||||
| // | ||||
| // This function is deterministic. Thus, if the set of possible messages is | ||||
| // small, an attacker may be able to build a map from messages to signatures | ||||
| // and identify the signed messages. As ever, signatures provide authenticity, | ||||
| // not confidentiality. | ||||
| func SignPKCS1v15(rand io.Reader, priv *PrivateKey, hash crypto.Hash, hashed []byte) (s []byte, err error) { | ||||
| 	hashLen, prefix, err := pkcs1v15HashInfo(hash, len(hashed)) | ||||
| 	if err != nil { | ||||
| 		return | ||||
| 	} | ||||
|  | ||||
| 	tLen := len(prefix) + hashLen | ||||
| 	k := (priv.N.BitLen() + 7) / 8 | ||||
| 	if k < tLen+11 { | ||||
| 		return nil, ErrMessageTooLong | ||||
| 	} | ||||
|  | ||||
| 	// EM = 0x00 || 0x01 || PS || 0x00 || T | ||||
| 	em := make([]byte, k) | ||||
| 	em[1] = 1 | ||||
| 	for i := 2; i < k-tLen-1; i++ { | ||||
| 		em[i] = 0xff | ||||
| 	} | ||||
| 	copy(em[k-tLen:k-hashLen], prefix) | ||||
| 	copy(em[k-hashLen:k], hashed) | ||||
|  | ||||
| 	m := new(big.Int).SetBytes(em) | ||||
| 	c, err := decryptAndCheck(rand, priv, m) | ||||
| 	if err != nil { | ||||
| 		return | ||||
| 	} | ||||
|  | ||||
| 	copyWithLeftPad(em, c.Bytes()) | ||||
| 	s = em | ||||
| 	return | ||||
| } | ||||
|  | ||||
| // VerifyPKCS1v15 verifies an RSA PKCS#1 v1.5 signature. | ||||
| // hashed is the result of hashing the input message using the given hash | ||||
| // function and sig is the signature. A valid signature is indicated by | ||||
| // returning a nil error. If hash is zero then hashed is used directly. This | ||||
| // isn't advisable except for interoperability. | ||||
| func VerifyPKCS1v15(pub *PublicKey, hash crypto.Hash, hashed []byte, sig []byte) (err error) { | ||||
| 	hashLen, prefix, err := pkcs1v15HashInfo(hash, len(hashed)) | ||||
| 	if err != nil { | ||||
| 		return | ||||
| 	} | ||||
|  | ||||
| 	tLen := len(prefix) + hashLen | ||||
| 	k := (pub.N.BitLen() + 7) / 8 | ||||
| 	if k < tLen+11 { | ||||
| 		err = ErrVerification | ||||
| 		return | ||||
| 	} | ||||
|  | ||||
| 	c := new(big.Int).SetBytes(sig) | ||||
| 	m := encrypt(new(big.Int), pub, c) | ||||
| 	em := leftPad(m.Bytes(), k) | ||||
| 	// EM = 0x00 || 0x01 || PS || 0x00 || T | ||||
|  | ||||
| 	ok := subtle.ConstantTimeByteEq(em[0], 0) | ||||
| 	ok &= subtle.ConstantTimeByteEq(em[1], 1) | ||||
| 	ok &= subtle.ConstantTimeCompare(em[k-hashLen:k], hashed) | ||||
| 	ok &= subtle.ConstantTimeCompare(em[k-tLen:k-hashLen], prefix) | ||||
| 	ok &= subtle.ConstantTimeByteEq(em[k-tLen-1], 0) | ||||
|  | ||||
| 	for i := 2; i < k-tLen-1; i++ { | ||||
| 		ok &= subtle.ConstantTimeByteEq(em[i], 0xff) | ||||
| 	} | ||||
|  | ||||
| 	if ok != 1 { | ||||
| 		return ErrVerification | ||||
| 	} | ||||
|  | ||||
| 	return nil | ||||
| } | ||||
|  | ||||
| func pkcs1v15HashInfo(hash crypto.Hash, inLen int) (hashLen int, prefix []byte, err error) { | ||||
| 	// Special case: crypto.Hash(0) is used to indicate that the data is | ||||
| 	// signed directly. | ||||
| 	if hash == 0 { | ||||
| 		return inLen, nil, nil | ||||
| 	} | ||||
|  | ||||
| 	hashLen = hash.Size() | ||||
| 	if inLen != hashLen { | ||||
| 		return 0, nil, errors.New("crypto/rsa: input must be hashed message") | ||||
| 	} | ||||
| 	prefix, ok := hashPrefixes[hash] | ||||
| 	if !ok { | ||||
| 		return 0, nil, errors.New("crypto/rsa: unsupported hash function") | ||||
| 	} | ||||
| 	return | ||||
| } | ||||
|  | ||||
| // copyWithLeftPad copies src to the end of dest, padding with zero bytes as | ||||
| // needed. | ||||
| func copyWithLeftPad(dest, src []byte) { | ||||
| 	numPaddingBytes := len(dest) - len(src) | ||||
| 	for i := 0; i < numPaddingBytes; i++ { | ||||
| 		dest[i] = 0 | ||||
| 	} | ||||
| 	copy(dest[numPaddingBytes:], src) | ||||
| } | ||||
							
								
								
									
										297
									
								
								vendor/github.com/keybase/go-crypto/rsa/pss.go
									
									
									
										generated
									
									
										vendored
									
									
										Normal file
									
								
							
							
						
						
									
										297
									
								
								vendor/github.com/keybase/go-crypto/rsa/pss.go
									
									
									
										generated
									
									
										vendored
									
									
										Normal file
									
								
							| @@ -0,0 +1,297 @@ | ||||
| // Copyright 2013 The Go Authors. All rights reserved. | ||||
| // Use of this source code is governed by a BSD-style | ||||
| // license that can be found in the LICENSE file. | ||||
|  | ||||
| package rsa | ||||
|  | ||||
| // This file implements the PSS signature scheme [1]. | ||||
| // | ||||
| // [1] http://www.rsa.com/rsalabs/pkcs/files/h11300-wp-pkcs-1v2-2-rsa-cryptography-standard.pdf | ||||
|  | ||||
| import ( | ||||
| 	"bytes" | ||||
| 	"crypto" | ||||
| 	"errors" | ||||
| 	"hash" | ||||
| 	"io" | ||||
| 	"math/big" | ||||
| ) | ||||
|  | ||||
| func emsaPSSEncode(mHash []byte, emBits int, salt []byte, hash hash.Hash) ([]byte, error) { | ||||
| 	// See [1], section 9.1.1 | ||||
| 	hLen := hash.Size() | ||||
| 	sLen := len(salt) | ||||
| 	emLen := (emBits + 7) / 8 | ||||
|  | ||||
| 	// 1.  If the length of M is greater than the input limitation for the | ||||
| 	//     hash function (2^61 - 1 octets for SHA-1), output "message too | ||||
| 	//     long" and stop. | ||||
| 	// | ||||
| 	// 2.  Let mHash = Hash(M), an octet string of length hLen. | ||||
|  | ||||
| 	if len(mHash) != hLen { | ||||
| 		return nil, errors.New("crypto/rsa: input must be hashed message") | ||||
| 	} | ||||
|  | ||||
| 	// 3.  If emLen < hLen + sLen + 2, output "encoding error" and stop. | ||||
|  | ||||
| 	if emLen < hLen+sLen+2 { | ||||
| 		return nil, errors.New("crypto/rsa: encoding error") | ||||
| 	} | ||||
|  | ||||
| 	em := make([]byte, emLen) | ||||
| 	db := em[:emLen-sLen-hLen-2+1+sLen] | ||||
| 	h := em[emLen-sLen-hLen-2+1+sLen : emLen-1] | ||||
|  | ||||
| 	// 4.  Generate a random octet string salt of length sLen; if sLen = 0, | ||||
| 	//     then salt is the empty string. | ||||
| 	// | ||||
| 	// 5.  Let | ||||
| 	//       M' = (0x)00 00 00 00 00 00 00 00 || mHash || salt; | ||||
| 	// | ||||
| 	//     M' is an octet string of length 8 + hLen + sLen with eight | ||||
| 	//     initial zero octets. | ||||
| 	// | ||||
| 	// 6.  Let H = Hash(M'), an octet string of length hLen. | ||||
|  | ||||
| 	var prefix [8]byte | ||||
|  | ||||
| 	hash.Write(prefix[:]) | ||||
| 	hash.Write(mHash) | ||||
| 	hash.Write(salt) | ||||
|  | ||||
| 	h = hash.Sum(h[:0]) | ||||
| 	hash.Reset() | ||||
|  | ||||
| 	// 7.  Generate an octet string PS consisting of emLen - sLen - hLen - 2 | ||||
| 	//     zero octets.  The length of PS may be 0. | ||||
| 	// | ||||
| 	// 8.  Let DB = PS || 0x01 || salt; DB is an octet string of length | ||||
| 	//     emLen - hLen - 1. | ||||
|  | ||||
| 	db[emLen-sLen-hLen-2] = 0x01 | ||||
| 	copy(db[emLen-sLen-hLen-1:], salt) | ||||
|  | ||||
| 	// 9.  Let dbMask = MGF(H, emLen - hLen - 1). | ||||
| 	// | ||||
| 	// 10. Let maskedDB = DB \xor dbMask. | ||||
|  | ||||
| 	mgf1XOR(db, hash, h) | ||||
|  | ||||
| 	// 11. Set the leftmost 8 * emLen - emBits bits of the leftmost octet in | ||||
| 	//     maskedDB to zero. | ||||
|  | ||||
| 	db[0] &= (0xFF >> uint(8*emLen-emBits)) | ||||
|  | ||||
| 	// 12. Let EM = maskedDB || H || 0xbc. | ||||
| 	em[emLen-1] = 0xBC | ||||
|  | ||||
| 	// 13. Output EM. | ||||
| 	return em, nil | ||||
| } | ||||
|  | ||||
| func emsaPSSVerify(mHash, em []byte, emBits, sLen int, hash hash.Hash) error { | ||||
| 	// 1.  If the length of M is greater than the input limitation for the | ||||
| 	//     hash function (2^61 - 1 octets for SHA-1), output "inconsistent" | ||||
| 	//     and stop. | ||||
| 	// | ||||
| 	// 2.  Let mHash = Hash(M), an octet string of length hLen. | ||||
| 	hLen := hash.Size() | ||||
| 	if hLen != len(mHash) { | ||||
| 		return ErrVerification | ||||
| 	} | ||||
|  | ||||
| 	// 3.  If emLen < hLen + sLen + 2, output "inconsistent" and stop. | ||||
| 	emLen := (emBits + 7) / 8 | ||||
| 	if emLen < hLen+sLen+2 { | ||||
| 		return ErrVerification | ||||
| 	} | ||||
|  | ||||
| 	// 4.  If the rightmost octet of EM does not have hexadecimal value | ||||
| 	//     0xbc, output "inconsistent" and stop. | ||||
| 	if em[len(em)-1] != 0xBC { | ||||
| 		return ErrVerification | ||||
| 	} | ||||
|  | ||||
| 	// 5.  Let maskedDB be the leftmost emLen - hLen - 1 octets of EM, and | ||||
| 	//     let H be the next hLen octets. | ||||
| 	db := em[:emLen-hLen-1] | ||||
| 	h := em[emLen-hLen-1 : len(em)-1] | ||||
|  | ||||
| 	// 6.  If the leftmost 8 * emLen - emBits bits of the leftmost octet in | ||||
| 	//     maskedDB are not all equal to zero, output "inconsistent" and | ||||
| 	//     stop. | ||||
| 	if em[0]&(0xFF<<uint(8-(8*emLen-emBits))) != 0 { | ||||
| 		return ErrVerification | ||||
| 	} | ||||
|  | ||||
| 	// 7.  Let dbMask = MGF(H, emLen - hLen - 1). | ||||
| 	// | ||||
| 	// 8.  Let DB = maskedDB \xor dbMask. | ||||
| 	mgf1XOR(db, hash, h) | ||||
|  | ||||
| 	// 9.  Set the leftmost 8 * emLen - emBits bits of the leftmost octet in DB | ||||
| 	//     to zero. | ||||
| 	db[0] &= (0xFF >> uint(8*emLen-emBits)) | ||||
|  | ||||
| 	if sLen == PSSSaltLengthAuto { | ||||
| 	FindSaltLength: | ||||
| 		for sLen = emLen - (hLen + 2); sLen >= 0; sLen-- { | ||||
| 			switch db[emLen-hLen-sLen-2] { | ||||
| 			case 1: | ||||
| 				break FindSaltLength | ||||
| 			case 0: | ||||
| 				continue | ||||
| 			default: | ||||
| 				return ErrVerification | ||||
| 			} | ||||
| 		} | ||||
| 		if sLen < 0 { | ||||
| 			return ErrVerification | ||||
| 		} | ||||
| 	} else { | ||||
| 		// 10. If the emLen - hLen - sLen - 2 leftmost octets of DB are not zero | ||||
| 		//     or if the octet at position emLen - hLen - sLen - 1 (the leftmost | ||||
| 		//     position is "position 1") does not have hexadecimal value 0x01, | ||||
| 		//     output "inconsistent" and stop. | ||||
| 		for _, e := range db[:emLen-hLen-sLen-2] { | ||||
| 			if e != 0x00 { | ||||
| 				return ErrVerification | ||||
| 			} | ||||
| 		} | ||||
| 		if db[emLen-hLen-sLen-2] != 0x01 { | ||||
| 			return ErrVerification | ||||
| 		} | ||||
| 	} | ||||
|  | ||||
| 	// 11.  Let salt be the last sLen octets of DB. | ||||
| 	salt := db[len(db)-sLen:] | ||||
|  | ||||
| 	// 12.  Let | ||||
| 	//          M' = (0x)00 00 00 00 00 00 00 00 || mHash || salt ; | ||||
| 	//     M' is an octet string of length 8 + hLen + sLen with eight | ||||
| 	//     initial zero octets. | ||||
| 	// | ||||
| 	// 13. Let H' = Hash(M'), an octet string of length hLen. | ||||
| 	var prefix [8]byte | ||||
| 	hash.Write(prefix[:]) | ||||
| 	hash.Write(mHash) | ||||
| 	hash.Write(salt) | ||||
|  | ||||
| 	h0 := hash.Sum(nil) | ||||
|  | ||||
| 	// 14. If H = H', output "consistent." Otherwise, output "inconsistent." | ||||
| 	if !bytes.Equal(h0, h) { | ||||
| 		return ErrVerification | ||||
| 	} | ||||
| 	return nil | ||||
| } | ||||
|  | ||||
| // signPSSWithSalt calculates the signature of hashed using PSS [1] with specified salt. | ||||
| // Note that hashed must be the result of hashing the input message using the | ||||
| // given hash function. salt is a random sequence of bytes whose length will be | ||||
| // later used to verify the signature. | ||||
| func signPSSWithSalt(rand io.Reader, priv *PrivateKey, hash crypto.Hash, hashed, salt []byte) (s []byte, err error) { | ||||
| 	nBits := priv.N.BitLen() | ||||
| 	em, err := emsaPSSEncode(hashed, nBits-1, salt, hash.New()) | ||||
| 	if err != nil { | ||||
| 		return | ||||
| 	} | ||||
| 	m := new(big.Int).SetBytes(em) | ||||
| 	c, err := decryptAndCheck(rand, priv, m) | ||||
| 	if err != nil { | ||||
| 		return | ||||
| 	} | ||||
| 	s = make([]byte, (nBits+7)/8) | ||||
| 	copyWithLeftPad(s, c.Bytes()) | ||||
| 	return | ||||
| } | ||||
|  | ||||
| const ( | ||||
| 	// PSSSaltLengthAuto causes the salt in a PSS signature to be as large | ||||
| 	// as possible when signing, and to be auto-detected when verifying. | ||||
| 	PSSSaltLengthAuto = 0 | ||||
| 	// PSSSaltLengthEqualsHash causes the salt length to equal the length | ||||
| 	// of the hash used in the signature. | ||||
| 	PSSSaltLengthEqualsHash = -1 | ||||
| ) | ||||
|  | ||||
| // PSSOptions contains options for creating and verifying PSS signatures. | ||||
| type PSSOptions struct { | ||||
| 	// SaltLength controls the length of the salt used in the PSS | ||||
| 	// signature. It can either be a number of bytes, or one of the special | ||||
| 	// PSSSaltLength constants. | ||||
| 	SaltLength int | ||||
|  | ||||
| 	// Hash, if not zero, overrides the hash function passed to SignPSS. | ||||
| 	// This is the only way to specify the hash function when using the | ||||
| 	// crypto.Signer interface. | ||||
| 	Hash crypto.Hash | ||||
| } | ||||
|  | ||||
| // HashFunc returns pssOpts.Hash so that PSSOptions implements | ||||
| // crypto.SignerOpts. | ||||
| func (pssOpts *PSSOptions) HashFunc() crypto.Hash { | ||||
| 	return pssOpts.Hash | ||||
| } | ||||
|  | ||||
| func (opts *PSSOptions) saltLength() int { | ||||
| 	if opts == nil { | ||||
| 		return PSSSaltLengthAuto | ||||
| 	} | ||||
| 	return opts.SaltLength | ||||
| } | ||||
|  | ||||
| // SignPSS calculates the signature of hashed using RSASSA-PSS [1]. | ||||
| // Note that hashed must be the result of hashing the input message using the | ||||
| // given hash function. The opts argument may be nil, in which case sensible | ||||
| // defaults are used. | ||||
| func SignPSS(rand io.Reader, priv *PrivateKey, hash crypto.Hash, hashed []byte, opts *PSSOptions) (s []byte, err error) { | ||||
| 	saltLength := opts.saltLength() | ||||
| 	switch saltLength { | ||||
| 	case PSSSaltLengthAuto: | ||||
| 		saltLength = (priv.N.BitLen()+7)/8 - 2 - hash.Size() | ||||
| 	case PSSSaltLengthEqualsHash: | ||||
| 		saltLength = hash.Size() | ||||
| 	} | ||||
|  | ||||
| 	if opts != nil && opts.Hash != 0 { | ||||
| 		hash = opts.Hash | ||||
| 	} | ||||
|  | ||||
| 	salt := make([]byte, saltLength) | ||||
| 	if _, err = io.ReadFull(rand, salt); err != nil { | ||||
| 		return | ||||
| 	} | ||||
| 	return signPSSWithSalt(rand, priv, hash, hashed, salt) | ||||
| } | ||||
|  | ||||
| // VerifyPSS verifies a PSS signature. | ||||
| // hashed is the result of hashing the input message using the given hash | ||||
| // function and sig is the signature. A valid signature is indicated by | ||||
| // returning a nil error. The opts argument may be nil, in which case sensible | ||||
| // defaults are used. | ||||
| func VerifyPSS(pub *PublicKey, hash crypto.Hash, hashed []byte, sig []byte, opts *PSSOptions) error { | ||||
| 	return verifyPSS(pub, hash, hashed, sig, opts.saltLength()) | ||||
| } | ||||
|  | ||||
| // verifyPSS verifies a PSS signature with the given salt length. | ||||
| func verifyPSS(pub *PublicKey, hash crypto.Hash, hashed []byte, sig []byte, saltLen int) error { | ||||
| 	nBits := pub.N.BitLen() | ||||
| 	if len(sig) != (nBits+7)/8 { | ||||
| 		return ErrVerification | ||||
| 	} | ||||
| 	s := new(big.Int).SetBytes(sig) | ||||
| 	m := encrypt(new(big.Int), pub, s) | ||||
| 	emBits := nBits - 1 | ||||
| 	emLen := (emBits + 7) / 8 | ||||
| 	if emLen < len(m.Bytes()) { | ||||
| 		return ErrVerification | ||||
| 	} | ||||
| 	em := make([]byte, emLen) | ||||
| 	copyWithLeftPad(em, m.Bytes()) | ||||
| 	if saltLen == PSSSaltLengthEqualsHash { | ||||
| 		saltLen = hash.Size() | ||||
| 	} | ||||
| 	return emsaPSSVerify(hashed, em, emBits, saltLen, hash.New()) | ||||
| } | ||||
							
								
								
									
										646
									
								
								vendor/github.com/keybase/go-crypto/rsa/rsa.go
									
									
									
										generated
									
									
										vendored
									
									
										Normal file
									
								
							
							
						
						
									
										646
									
								
								vendor/github.com/keybase/go-crypto/rsa/rsa.go
									
									
									
										generated
									
									
										vendored
									
									
										Normal file
									
								
							| @@ -0,0 +1,646 @@ | ||||
| // Copyright 2009 The Go Authors. All rights reserved. | ||||
| // Use of this source code is governed by a BSD-style | ||||
| // license that can be found in the LICENSE file. | ||||
|  | ||||
| // Package rsa implements RSA encryption as specified in PKCS#1. | ||||
| // | ||||
| // RSA is a single, fundamental operation that is used in this package to | ||||
| // implement either public-key encryption or public-key signatures. | ||||
| // | ||||
| // The original specification for encryption and signatures with RSA is PKCS#1 | ||||
| // and the terms "RSA encryption" and "RSA signatures" by default refer to | ||||
| // PKCS#1 version 1.5. However, that specification has flaws and new designs | ||||
| // should use version two, usually called by just OAEP and PSS, where | ||||
| // possible. | ||||
| // | ||||
| // Two sets of interfaces are included in this package. When a more abstract | ||||
| // interface isn't neccessary, there are functions for encrypting/decrypting | ||||
| // with v1.5/OAEP and signing/verifying with v1.5/PSS. If one needs to abstract | ||||
| // over the public-key primitive, the PrivateKey struct implements the | ||||
| // Decrypter and Signer interfaces from the crypto package. | ||||
| package rsa | ||||
|  | ||||
| import ( | ||||
| 	"crypto" | ||||
| 	"crypto/rand" | ||||
| 	"crypto/subtle" | ||||
| 	"errors" | ||||
| 	"hash" | ||||
| 	"io" | ||||
| 	"math/big" | ||||
| ) | ||||
|  | ||||
| var bigZero = big.NewInt(0) | ||||
| var bigOne = big.NewInt(1) | ||||
|  | ||||
| // A PublicKey represents the public part of an RSA key. | ||||
| type PublicKey struct { | ||||
| 	N *big.Int // modulus | ||||
| 	E int64    // public exponent | ||||
| } | ||||
|  | ||||
| // OAEPOptions is an interface for passing options to OAEP decryption using the | ||||
| // crypto.Decrypter interface. | ||||
| type OAEPOptions struct { | ||||
| 	// Hash is the hash function that will be used when generating the mask. | ||||
| 	Hash crypto.Hash | ||||
| 	// Label is an arbitrary byte string that must be equal to the value | ||||
| 	// used when encrypting. | ||||
| 	Label []byte | ||||
| } | ||||
|  | ||||
| var ( | ||||
| 	errPublicModulus       = errors.New("crypto/rsa: missing public modulus") | ||||
| 	errPublicExponentSmall = errors.New("crypto/rsa: public exponent too small") | ||||
| 	errPublicExponentLarge = errors.New("crypto/rsa: public exponent too large") | ||||
| ) | ||||
|  | ||||
| // checkPub sanity checks the public key before we use it. | ||||
| // We require pub.E to fit into a 32-bit integer so that we | ||||
| // do not have different behavior depending on whether | ||||
| // int is 32 or 64 bits. See also | ||||
| // http://www.imperialviolet.org/2012/03/16/rsae.html. | ||||
| func checkPub(pub *PublicKey) error { | ||||
| 	if pub.N == nil { | ||||
| 		return errPublicModulus | ||||
| 	} | ||||
| 	if pub.E < 2 { | ||||
| 		return errPublicExponentSmall | ||||
| 	} | ||||
| 	if pub.E > 1<<63-1 { | ||||
| 		return errPublicExponentLarge | ||||
| 	} | ||||
| 	return nil | ||||
| } | ||||
|  | ||||
| // A PrivateKey represents an RSA key | ||||
| type PrivateKey struct { | ||||
| 	PublicKey            // public part. | ||||
| 	D         *big.Int   // private exponent | ||||
| 	Primes    []*big.Int // prime factors of N, has >= 2 elements. | ||||
|  | ||||
| 	// Precomputed contains precomputed values that speed up private | ||||
| 	// operations, if available. | ||||
| 	Precomputed PrecomputedValues | ||||
| } | ||||
|  | ||||
| // Public returns the public key corresponding to priv. | ||||
| func (priv *PrivateKey) Public() crypto.PublicKey { | ||||
| 	return &priv.PublicKey | ||||
| } | ||||
|  | ||||
| // Sign signs msg with priv, reading randomness from rand. If opts is a | ||||
| // *PSSOptions then the PSS algorithm will be used, otherwise PKCS#1 v1.5 will | ||||
| // be used. This method is intended to support keys where the private part is | ||||
| // kept in, for example, a hardware module. Common uses should use the Sign* | ||||
| // functions in this package. | ||||
| func (priv *PrivateKey) Sign(rand io.Reader, msg []byte, opts crypto.SignerOpts) ([]byte, error) { | ||||
| 	if pssOpts, ok := opts.(*PSSOptions); ok { | ||||
| 		return SignPSS(rand, priv, pssOpts.Hash, msg, pssOpts) | ||||
| 	} | ||||
|  | ||||
| 	return SignPKCS1v15(rand, priv, opts.HashFunc(), msg) | ||||
| } | ||||
|  | ||||
| // Decrypt decrypts ciphertext with priv. If opts is nil or of type | ||||
| // *PKCS1v15DecryptOptions then PKCS#1 v1.5 decryption is performed. Otherwise | ||||
| // opts must have type *OAEPOptions and OAEP decryption is done. | ||||
| func (priv *PrivateKey) Decrypt(rand io.Reader, ciphertext []byte, opts crypto.DecrypterOpts) (plaintext []byte, err error) { | ||||
| 	if opts == nil { | ||||
| 		return DecryptPKCS1v15(rand, priv, ciphertext) | ||||
| 	} | ||||
|  | ||||
| 	switch opts := opts.(type) { | ||||
| 	case *OAEPOptions: | ||||
| 		return DecryptOAEP(opts.Hash.New(), rand, priv, ciphertext, opts.Label) | ||||
|  | ||||
| 	case *PKCS1v15DecryptOptions: | ||||
| 		if l := opts.SessionKeyLen; l > 0 { | ||||
| 			plaintext = make([]byte, l) | ||||
| 			if _, err := io.ReadFull(rand, plaintext); err != nil { | ||||
| 				return nil, err | ||||
| 			} | ||||
| 			if err := DecryptPKCS1v15SessionKey(rand, priv, ciphertext, plaintext); err != nil { | ||||
| 				return nil, err | ||||
| 			} | ||||
| 			return plaintext, nil | ||||
| 		} else { | ||||
| 			return DecryptPKCS1v15(rand, priv, ciphertext) | ||||
| 		} | ||||
|  | ||||
| 	default: | ||||
| 		return nil, errors.New("crypto/rsa: invalid options for Decrypt") | ||||
| 	} | ||||
| } | ||||
|  | ||||
| type PrecomputedValues struct { | ||||
| 	Dp, Dq *big.Int // D mod (P-1) (or mod Q-1) | ||||
| 	Qinv   *big.Int // Q^-1 mod P | ||||
|  | ||||
| 	// CRTValues is used for the 3rd and subsequent primes. Due to a | ||||
| 	// historical accident, the CRT for the first two primes is handled | ||||
| 	// differently in PKCS#1 and interoperability is sufficiently | ||||
| 	// important that we mirror this. | ||||
| 	CRTValues []CRTValue | ||||
| } | ||||
|  | ||||
| // CRTValue contains the precomputed Chinese remainder theorem values. | ||||
| type CRTValue struct { | ||||
| 	Exp   *big.Int // D mod (prime-1). | ||||
| 	Coeff *big.Int // R·Coeff ≡ 1 mod Prime. | ||||
| 	R     *big.Int // product of primes prior to this (inc p and q). | ||||
| } | ||||
|  | ||||
| // Validate performs basic sanity checks on the key. | ||||
| // It returns nil if the key is valid, or else an error describing a problem. | ||||
| func (priv *PrivateKey) Validate() error { | ||||
| 	if err := checkPub(&priv.PublicKey); err != nil { | ||||
| 		return err | ||||
| 	} | ||||
|  | ||||
| 	// Check that Πprimes == n. | ||||
| 	modulus := new(big.Int).Set(bigOne) | ||||
| 	for _, prime := range priv.Primes { | ||||
| 		// Any primes ≤ 1 will cause divide-by-zero panics later. | ||||
| 		if prime.Cmp(bigOne) <= 0 { | ||||
| 			return errors.New("crypto/rsa: invalid prime value") | ||||
| 		} | ||||
| 		modulus.Mul(modulus, prime) | ||||
| 	} | ||||
| 	if modulus.Cmp(priv.N) != 0 { | ||||
| 		return errors.New("crypto/rsa: invalid modulus") | ||||
| 	} | ||||
|  | ||||
| 	// Check that de ≡ 1 mod p-1, for each prime. | ||||
| 	// This implies that e is coprime to each p-1 as e has a multiplicative | ||||
| 	// inverse. Therefore e is coprime to lcm(p-1,q-1,r-1,...) = | ||||
| 	// exponent(ℤ/nℤ). It also implies that a^de ≡ a mod p as a^(p-1) ≡ 1 | ||||
| 	// mod p. Thus a^de ≡ a mod n for all a coprime to n, as required. | ||||
| 	congruence := new(big.Int) | ||||
| 	de := new(big.Int).SetInt64(int64(priv.E)) | ||||
| 	de.Mul(de, priv.D) | ||||
| 	for _, prime := range priv.Primes { | ||||
| 		pminus1 := new(big.Int).Sub(prime, bigOne) | ||||
| 		congruence.Mod(de, pminus1) | ||||
| 		if congruence.Cmp(bigOne) != 0 { | ||||
| 			return errors.New("crypto/rsa: invalid exponents") | ||||
| 		} | ||||
| 	} | ||||
| 	return nil | ||||
| } | ||||
|  | ||||
| // GenerateKey generates an RSA keypair of the given bit size using the | ||||
| // random source random (for example, crypto/rand.Reader). | ||||
| func GenerateKey(random io.Reader, bits int) (priv *PrivateKey, err error) { | ||||
| 	return GenerateMultiPrimeKey(random, 2, bits) | ||||
| } | ||||
|  | ||||
| // GenerateMultiPrimeKey generates a multi-prime RSA keypair of the given bit | ||||
| // size and the given random source, as suggested in [1]. Although the public | ||||
| // keys are compatible (actually, indistinguishable) from the 2-prime case, | ||||
| // the private keys are not. Thus it may not be possible to export multi-prime | ||||
| // private keys in certain formats or to subsequently import them into other | ||||
| // code. | ||||
| // | ||||
| // Table 1 in [2] suggests maximum numbers of primes for a given size. | ||||
| // | ||||
| // [1] US patent 4405829 (1972, expired) | ||||
| // [2] http://www.cacr.math.uwaterloo.ca/techreports/2006/cacr2006-16.pdf | ||||
| func GenerateMultiPrimeKey(random io.Reader, nprimes int, bits int) (priv *PrivateKey, err error) { | ||||
| 	priv = new(PrivateKey) | ||||
| 	priv.E = 65537 | ||||
|  | ||||
| 	if nprimes < 2 { | ||||
| 		return nil, errors.New("crypto/rsa: GenerateMultiPrimeKey: nprimes must be >= 2") | ||||
| 	} | ||||
|  | ||||
| 	primes := make([]*big.Int, nprimes) | ||||
|  | ||||
| NextSetOfPrimes: | ||||
| 	for { | ||||
| 		todo := bits | ||||
| 		// crypto/rand should set the top two bits in each prime. | ||||
| 		// Thus each prime has the form | ||||
| 		//   p_i = 2^bitlen(p_i) × 0.11... (in base 2). | ||||
| 		// And the product is: | ||||
| 		//   P = 2^todo × α | ||||
| 		// where α is the product of nprimes numbers of the form 0.11... | ||||
| 		// | ||||
| 		// If α < 1/2 (which can happen for nprimes > 2), we need to | ||||
| 		// shift todo to compensate for lost bits: the mean value of 0.11... | ||||
| 		// is 7/8, so todo + shift - nprimes * log2(7/8) ~= bits - 1/2 | ||||
| 		// will give good results. | ||||
| 		if nprimes >= 7 { | ||||
| 			todo += (nprimes - 2) / 5 | ||||
| 		} | ||||
| 		for i := 0; i < nprimes; i++ { | ||||
| 			primes[i], err = rand.Prime(random, todo/(nprimes-i)) | ||||
| 			if err != nil { | ||||
| 				return nil, err | ||||
| 			} | ||||
| 			todo -= primes[i].BitLen() | ||||
| 		} | ||||
|  | ||||
| 		// Make sure that primes is pairwise unequal. | ||||
| 		for i, prime := range primes { | ||||
| 			for j := 0; j < i; j++ { | ||||
| 				if prime.Cmp(primes[j]) == 0 { | ||||
| 					continue NextSetOfPrimes | ||||
| 				} | ||||
| 			} | ||||
| 		} | ||||
|  | ||||
| 		n := new(big.Int).Set(bigOne) | ||||
| 		totient := new(big.Int).Set(bigOne) | ||||
| 		pminus1 := new(big.Int) | ||||
| 		for _, prime := range primes { | ||||
| 			n.Mul(n, prime) | ||||
| 			pminus1.Sub(prime, bigOne) | ||||
| 			totient.Mul(totient, pminus1) | ||||
| 		} | ||||
| 		if n.BitLen() != bits { | ||||
| 			// This should never happen for nprimes == 2 because | ||||
| 			// crypto/rand should set the top two bits in each prime. | ||||
| 			// For nprimes > 2 we hope it does not happen often. | ||||
| 			continue NextSetOfPrimes | ||||
| 		} | ||||
|  | ||||
| 		g := new(big.Int) | ||||
| 		priv.D = new(big.Int) | ||||
| 		y := new(big.Int) | ||||
| 		e := big.NewInt(int64(priv.E)) | ||||
| 		g.GCD(priv.D, y, e, totient) | ||||
|  | ||||
| 		if g.Cmp(bigOne) == 0 { | ||||
| 			if priv.D.Sign() < 0 { | ||||
| 				priv.D.Add(priv.D, totient) | ||||
| 			} | ||||
| 			priv.Primes = primes | ||||
| 			priv.N = n | ||||
|  | ||||
| 			break | ||||
| 		} | ||||
| 	} | ||||
|  | ||||
| 	priv.Precompute() | ||||
| 	return | ||||
| } | ||||
|  | ||||
| // incCounter increments a four byte, big-endian counter. | ||||
| func incCounter(c *[4]byte) { | ||||
| 	if c[3]++; c[3] != 0 { | ||||
| 		return | ||||
| 	} | ||||
| 	if c[2]++; c[2] != 0 { | ||||
| 		return | ||||
| 	} | ||||
| 	if c[1]++; c[1] != 0 { | ||||
| 		return | ||||
| 	} | ||||
| 	c[0]++ | ||||
| } | ||||
|  | ||||
| // mgf1XOR XORs the bytes in out with a mask generated using the MGF1 function | ||||
| // specified in PKCS#1 v2.1. | ||||
| func mgf1XOR(out []byte, hash hash.Hash, seed []byte) { | ||||
| 	var counter [4]byte | ||||
| 	var digest []byte | ||||
|  | ||||
| 	done := 0 | ||||
| 	for done < len(out) { | ||||
| 		hash.Write(seed) | ||||
| 		hash.Write(counter[0:4]) | ||||
| 		digest = hash.Sum(digest[:0]) | ||||
| 		hash.Reset() | ||||
|  | ||||
| 		for i := 0; i < len(digest) && done < len(out); i++ { | ||||
| 			out[done] ^= digest[i] | ||||
| 			done++ | ||||
| 		} | ||||
| 		incCounter(&counter) | ||||
| 	} | ||||
| } | ||||
|  | ||||
| // ErrMessageTooLong is returned when attempting to encrypt a message which is | ||||
| // too large for the size of the public key. | ||||
| var ErrMessageTooLong = errors.New("crypto/rsa: message too long for RSA public key size") | ||||
|  | ||||
| func encrypt(c *big.Int, pub *PublicKey, m *big.Int) *big.Int { | ||||
| 	e := big.NewInt(int64(pub.E)) | ||||
| 	c.Exp(m, e, pub.N) | ||||
| 	return c | ||||
| } | ||||
|  | ||||
| // EncryptOAEP encrypts the given message with RSA-OAEP. | ||||
| // | ||||
| // OAEP is parameterised by a hash function that is used as a random oracle. | ||||
| // Encryption and decryption of a given message must use the same hash function | ||||
| // and sha256.New() is a reasonable choice. | ||||
| // | ||||
| // The random parameter is used as a source of entropy to ensure that | ||||
| // encrypting the same message twice doesn't result in the same ciphertext. | ||||
| // | ||||
| // The label parameter may contain arbitrary data that will not be encrypted, | ||||
| // but which gives important context to the message. For example, if a given | ||||
| // public key is used to decrypt two types of messages then distinct label | ||||
| // values could be used to ensure that a ciphertext for one purpose cannot be | ||||
| // used for another by an attacker. If not required it can be empty. | ||||
| // | ||||
| // The message must be no longer than the length of the public modulus less | ||||
| // twice the hash length plus 2. | ||||
| func EncryptOAEP(hash hash.Hash, random io.Reader, pub *PublicKey, msg []byte, label []byte) (out []byte, err error) { | ||||
| 	if err := checkPub(pub); err != nil { | ||||
| 		return nil, err | ||||
| 	} | ||||
| 	hash.Reset() | ||||
| 	k := (pub.N.BitLen() + 7) / 8 | ||||
| 	if len(msg) > k-2*hash.Size()-2 { | ||||
| 		err = ErrMessageTooLong | ||||
| 		return | ||||
| 	} | ||||
|  | ||||
| 	hash.Write(label) | ||||
| 	lHash := hash.Sum(nil) | ||||
| 	hash.Reset() | ||||
|  | ||||
| 	em := make([]byte, k) | ||||
| 	seed := em[1 : 1+hash.Size()] | ||||
| 	db := em[1+hash.Size():] | ||||
|  | ||||
| 	copy(db[0:hash.Size()], lHash) | ||||
| 	db[len(db)-len(msg)-1] = 1 | ||||
| 	copy(db[len(db)-len(msg):], msg) | ||||
|  | ||||
| 	_, err = io.ReadFull(random, seed) | ||||
| 	if err != nil { | ||||
| 		return | ||||
| 	} | ||||
|  | ||||
| 	mgf1XOR(db, hash, seed) | ||||
| 	mgf1XOR(seed, hash, db) | ||||
|  | ||||
| 	m := new(big.Int) | ||||
| 	m.SetBytes(em) | ||||
| 	c := encrypt(new(big.Int), pub, m) | ||||
| 	out = c.Bytes() | ||||
|  | ||||
| 	if len(out) < k { | ||||
| 		// If the output is too small, we need to left-pad with zeros. | ||||
| 		t := make([]byte, k) | ||||
| 		copy(t[k-len(out):], out) | ||||
| 		out = t | ||||
| 	} | ||||
|  | ||||
| 	return | ||||
| } | ||||
|  | ||||
| // ErrDecryption represents a failure to decrypt a message. | ||||
| // It is deliberately vague to avoid adaptive attacks. | ||||
| var ErrDecryption = errors.New("crypto/rsa: decryption error") | ||||
|  | ||||
| // ErrVerification represents a failure to verify a signature. | ||||
| // It is deliberately vague to avoid adaptive attacks. | ||||
| var ErrVerification = errors.New("crypto/rsa: verification error") | ||||
|  | ||||
| // modInverse returns ia, the inverse of a in the multiplicative group of prime | ||||
| // order n. It requires that a be a member of the group (i.e. less than n). | ||||
| func modInverse(a, n *big.Int) (ia *big.Int, ok bool) { | ||||
| 	g := new(big.Int) | ||||
| 	x := new(big.Int) | ||||
| 	y := new(big.Int) | ||||
| 	g.GCD(x, y, a, n) | ||||
| 	if g.Cmp(bigOne) != 0 { | ||||
| 		// In this case, a and n aren't coprime and we cannot calculate | ||||
| 		// the inverse. This happens because the values of n are nearly | ||||
| 		// prime (being the product of two primes) rather than truly | ||||
| 		// prime. | ||||
| 		return | ||||
| 	} | ||||
|  | ||||
| 	if x.Cmp(bigOne) < 0 { | ||||
| 		// 0 is not the multiplicative inverse of any element so, if x | ||||
| 		// < 1, then x is negative. | ||||
| 		x.Add(x, n) | ||||
| 	} | ||||
|  | ||||
| 	return x, true | ||||
| } | ||||
|  | ||||
| // Precompute performs some calculations that speed up private key operations | ||||
| // in the future. | ||||
| func (priv *PrivateKey) Precompute() { | ||||
| 	if priv.Precomputed.Dp != nil { | ||||
| 		return | ||||
| 	} | ||||
|  | ||||
| 	priv.Precomputed.Dp = new(big.Int).Sub(priv.Primes[0], bigOne) | ||||
| 	priv.Precomputed.Dp.Mod(priv.D, priv.Precomputed.Dp) | ||||
|  | ||||
| 	priv.Precomputed.Dq = new(big.Int).Sub(priv.Primes[1], bigOne) | ||||
| 	priv.Precomputed.Dq.Mod(priv.D, priv.Precomputed.Dq) | ||||
|  | ||||
| 	priv.Precomputed.Qinv = new(big.Int).ModInverse(priv.Primes[1], priv.Primes[0]) | ||||
|  | ||||
| 	r := new(big.Int).Mul(priv.Primes[0], priv.Primes[1]) | ||||
| 	priv.Precomputed.CRTValues = make([]CRTValue, len(priv.Primes)-2) | ||||
| 	for i := 2; i < len(priv.Primes); i++ { | ||||
| 		prime := priv.Primes[i] | ||||
| 		values := &priv.Precomputed.CRTValues[i-2] | ||||
|  | ||||
| 		values.Exp = new(big.Int).Sub(prime, bigOne) | ||||
| 		values.Exp.Mod(priv.D, values.Exp) | ||||
|  | ||||
| 		values.R = new(big.Int).Set(r) | ||||
| 		values.Coeff = new(big.Int).ModInverse(r, prime) | ||||
|  | ||||
| 		r.Mul(r, prime) | ||||
| 	} | ||||
| } | ||||
|  | ||||
| // decrypt performs an RSA decryption, resulting in a plaintext integer. If a | ||||
| // random source is given, RSA blinding is used. | ||||
| func decrypt(random io.Reader, priv *PrivateKey, c *big.Int) (m *big.Int, err error) { | ||||
| 	// TODO(agl): can we get away with reusing blinds? | ||||
| 	if c.Cmp(priv.N) > 0 { | ||||
| 		err = ErrDecryption | ||||
| 		return | ||||
| 	} | ||||
|  | ||||
| 	var ir *big.Int | ||||
| 	if random != nil { | ||||
| 		// Blinding enabled. Blinding involves multiplying c by r^e. | ||||
| 		// Then the decryption operation performs (m^e * r^e)^d mod n | ||||
| 		// which equals mr mod n. The factor of r can then be removed | ||||
| 		// by multiplying by the multiplicative inverse of r. | ||||
|  | ||||
| 		var r *big.Int | ||||
|  | ||||
| 		for { | ||||
| 			r, err = rand.Int(random, priv.N) | ||||
| 			if err != nil { | ||||
| 				return | ||||
| 			} | ||||
| 			if r.Cmp(bigZero) == 0 { | ||||
| 				r = bigOne | ||||
| 			} | ||||
| 			var ok bool | ||||
| 			ir, ok = modInverse(r, priv.N) | ||||
| 			if ok { | ||||
| 				break | ||||
| 			} | ||||
| 		} | ||||
| 		bigE := big.NewInt(int64(priv.E)) | ||||
| 		rpowe := new(big.Int).Exp(r, bigE, priv.N) | ||||
| 		cCopy := new(big.Int).Set(c) | ||||
| 		cCopy.Mul(cCopy, rpowe) | ||||
| 		cCopy.Mod(cCopy, priv.N) | ||||
| 		c = cCopy | ||||
| 	} | ||||
|  | ||||
| 	if priv.Precomputed.Dp == nil { | ||||
| 		m = new(big.Int).Exp(c, priv.D, priv.N) | ||||
| 	} else { | ||||
| 		// We have the precalculated values needed for the CRT. | ||||
| 		m = new(big.Int).Exp(c, priv.Precomputed.Dp, priv.Primes[0]) | ||||
| 		m2 := new(big.Int).Exp(c, priv.Precomputed.Dq, priv.Primes[1]) | ||||
| 		m.Sub(m, m2) | ||||
| 		if m.Sign() < 0 { | ||||
| 			m.Add(m, priv.Primes[0]) | ||||
| 		} | ||||
| 		m.Mul(m, priv.Precomputed.Qinv) | ||||
| 		m.Mod(m, priv.Primes[0]) | ||||
| 		m.Mul(m, priv.Primes[1]) | ||||
| 		m.Add(m, m2) | ||||
|  | ||||
| 		for i, values := range priv.Precomputed.CRTValues { | ||||
| 			prime := priv.Primes[2+i] | ||||
| 			m2.Exp(c, values.Exp, prime) | ||||
| 			m2.Sub(m2, m) | ||||
| 			m2.Mul(m2, values.Coeff) | ||||
| 			m2.Mod(m2, prime) | ||||
| 			if m2.Sign() < 0 { | ||||
| 				m2.Add(m2, prime) | ||||
| 			} | ||||
| 			m2.Mul(m2, values.R) | ||||
| 			m.Add(m, m2) | ||||
| 		} | ||||
| 	} | ||||
|  | ||||
| 	if ir != nil { | ||||
| 		// Unblind. | ||||
| 		m.Mul(m, ir) | ||||
| 		m.Mod(m, priv.N) | ||||
| 	} | ||||
|  | ||||
| 	return | ||||
| } | ||||
|  | ||||
| func decryptAndCheck(random io.Reader, priv *PrivateKey, c *big.Int) (m *big.Int, err error) { | ||||
| 	m, err = decrypt(random, priv, c) | ||||
| 	if err != nil { | ||||
| 		return nil, err | ||||
| 	} | ||||
|  | ||||
| 	// In order to defend against errors in the CRT computation, m^e is | ||||
| 	// calculated, which should match the original ciphertext. | ||||
| 	check := encrypt(new(big.Int), &priv.PublicKey, m) | ||||
| 	if c.Cmp(check) != 0 { | ||||
| 		return nil, errors.New("rsa: internal error") | ||||
| 	} | ||||
| 	return m, nil | ||||
| } | ||||
|  | ||||
| // DecryptOAEP decrypts ciphertext using RSA-OAEP. | ||||
|  | ||||
| // OAEP is parameterised by a hash function that is used as a random oracle. | ||||
| // Encryption and decryption of a given message must use the same hash function | ||||
| // and sha256.New() is a reasonable choice. | ||||
| // | ||||
| // The random parameter, if not nil, is used to blind the private-key operation | ||||
| // and avoid timing side-channel attacks. Blinding is purely internal to this | ||||
| // function – the random data need not match that used when encrypting. | ||||
| // | ||||
| // The label parameter must match the value given when encrypting. See | ||||
| // EncryptOAEP for details. | ||||
| func DecryptOAEP(hash hash.Hash, random io.Reader, priv *PrivateKey, ciphertext []byte, label []byte) (msg []byte, err error) { | ||||
| 	if err := checkPub(&priv.PublicKey); err != nil { | ||||
| 		return nil, err | ||||
| 	} | ||||
| 	k := (priv.N.BitLen() + 7) / 8 | ||||
| 	if len(ciphertext) > k || | ||||
| 		k < hash.Size()*2+2 { | ||||
| 		err = ErrDecryption | ||||
| 		return | ||||
| 	} | ||||
|  | ||||
| 	c := new(big.Int).SetBytes(ciphertext) | ||||
|  | ||||
| 	m, err := decrypt(random, priv, c) | ||||
| 	if err != nil { | ||||
| 		return | ||||
| 	} | ||||
|  | ||||
| 	hash.Write(label) | ||||
| 	lHash := hash.Sum(nil) | ||||
| 	hash.Reset() | ||||
|  | ||||
| 	// Converting the plaintext number to bytes will strip any | ||||
| 	// leading zeros so we may have to left pad. We do this unconditionally | ||||
| 	// to avoid leaking timing information. (Although we still probably | ||||
| 	// leak the number of leading zeros. It's not clear that we can do | ||||
| 	// anything about this.) | ||||
| 	em := leftPad(m.Bytes(), k) | ||||
|  | ||||
| 	firstByteIsZero := subtle.ConstantTimeByteEq(em[0], 0) | ||||
|  | ||||
| 	seed := em[1 : hash.Size()+1] | ||||
| 	db := em[hash.Size()+1:] | ||||
|  | ||||
| 	mgf1XOR(seed, hash, db) | ||||
| 	mgf1XOR(db, hash, seed) | ||||
|  | ||||
| 	lHash2 := db[0:hash.Size()] | ||||
|  | ||||
| 	// We have to validate the plaintext in constant time in order to avoid | ||||
| 	// attacks like: J. Manger. A Chosen Ciphertext Attack on RSA Optimal | ||||
| 	// Asymmetric Encryption Padding (OAEP) as Standardized in PKCS #1 | ||||
| 	// v2.0. In J. Kilian, editor, Advances in Cryptology. | ||||
| 	lHash2Good := subtle.ConstantTimeCompare(lHash, lHash2) | ||||
|  | ||||
| 	// The remainder of the plaintext must be zero or more 0x00, followed | ||||
| 	// by 0x01, followed by the message. | ||||
| 	//   lookingForIndex: 1 iff we are still looking for the 0x01 | ||||
| 	//   index: the offset of the first 0x01 byte | ||||
| 	//   invalid: 1 iff we saw a non-zero byte before the 0x01. | ||||
| 	var lookingForIndex, index, invalid int | ||||
| 	lookingForIndex = 1 | ||||
| 	rest := db[hash.Size():] | ||||
|  | ||||
| 	for i := 0; i < len(rest); i++ { | ||||
| 		equals0 := subtle.ConstantTimeByteEq(rest[i], 0) | ||||
| 		equals1 := subtle.ConstantTimeByteEq(rest[i], 1) | ||||
| 		index = subtle.ConstantTimeSelect(lookingForIndex&equals1, i, index) | ||||
| 		lookingForIndex = subtle.ConstantTimeSelect(equals1, 0, lookingForIndex) | ||||
| 		invalid = subtle.ConstantTimeSelect(lookingForIndex&^equals0, 1, invalid) | ||||
| 	} | ||||
|  | ||||
| 	if firstByteIsZero&lHash2Good&^invalid&^lookingForIndex != 1 { | ||||
| 		err = ErrDecryption | ||||
| 		return | ||||
| 	} | ||||
|  | ||||
| 	msg = rest[index+1:] | ||||
| 	return | ||||
| } | ||||
|  | ||||
| // leftPad returns a new slice of length size. The contents of input are right | ||||
| // aligned in the new slice. | ||||
| func leftPad(input []byte, size int) (out []byte) { | ||||
| 	n := len(input) | ||||
| 	if n > size { | ||||
| 		n = size | ||||
| 	} | ||||
| 	out = make([]byte, size) | ||||
| 	copy(out[len(out)-n:], input) | ||||
| 	return | ||||
| } | ||||
		Reference in New Issue
	
	Block a user