mirror of
				https://github.com/go-gitea/gitea.git
				synced 2025-10-29 10:57:44 +09:00 
			
		
		
		
	* update gitea.com/go-chi/binding
* update github.com/blevesearch/bleve/v2
* update github.com/caddyserver/certmagic
* update github.com/go-git/go-git/v5
* update github.com/lafriks/xormstore
* update github.com/yuin/goldmark
* Revert "update gitea.com/go-chi/binding"
This reverts commit dea2f292b1.
		
	
		
			
				
	
	
		
			417 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Go
		
	
	
	
		
			Vendored
		
	
	
	
			
		
		
	
	
			417 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Go
		
	
	
	
		
			Vendored
		
	
	
	
| // +build 386,!appengine amd64,!appengine arm,!appengine arm64,!appengine ppc64le,!appengine mipsle,!appengine mips64le,!appengine mips64p32le,!appengine wasm,!appengine
 | |
| 
 | |
| package roaring
 | |
| 
 | |
| import (
 | |
| 	"encoding/binary"
 | |
| 	"errors"
 | |
| 	"io"
 | |
| 	"reflect"
 | |
| 	"runtime"
 | |
| 	"unsafe"
 | |
| )
 | |
| 
 | |
| func (ac *arrayContainer) writeTo(stream io.Writer) (int, error) {
 | |
| 	buf := uint16SliceAsByteSlice(ac.content)
 | |
| 	return stream.Write(buf)
 | |
| }
 | |
| 
 | |
| func (bc *bitmapContainer) writeTo(stream io.Writer) (int, error) {
 | |
| 	if bc.cardinality <= arrayDefaultMaxSize {
 | |
| 		return 0, errors.New("refusing to write bitmap container with cardinality of array container")
 | |
| 	}
 | |
| 	buf := uint64SliceAsByteSlice(bc.bitmap)
 | |
| 	return stream.Write(buf)
 | |
| }
 | |
| 
 | |
| func uint64SliceAsByteSlice(slice []uint64) []byte {
 | |
| 	// make a new slice header
 | |
| 	header := *(*reflect.SliceHeader)(unsafe.Pointer(&slice))
 | |
| 
 | |
| 	// update its capacity and length
 | |
| 	header.Len *= 8
 | |
| 	header.Cap *= 8
 | |
| 
 | |
| 	// instantiate result and use KeepAlive so data isn't unmapped.
 | |
| 	result := *(*[]byte)(unsafe.Pointer(&header))
 | |
| 	runtime.KeepAlive(&slice)
 | |
| 
 | |
| 	// return it
 | |
| 	return result
 | |
| }
 | |
| 
 | |
| func uint16SliceAsByteSlice(slice []uint16) []byte {
 | |
| 	// make a new slice header
 | |
| 	header := *(*reflect.SliceHeader)(unsafe.Pointer(&slice))
 | |
| 
 | |
| 	// update its capacity and length
 | |
| 	header.Len *= 2
 | |
| 	header.Cap *= 2
 | |
| 
 | |
| 	// instantiate result and use KeepAlive so data isn't unmapped.
 | |
| 	result := *(*[]byte)(unsafe.Pointer(&header))
 | |
| 	runtime.KeepAlive(&slice)
 | |
| 
 | |
| 	// return it
 | |
| 	return result
 | |
| }
 | |
| 
 | |
| func (bc *bitmapContainer) asLittleEndianByteSlice() []byte {
 | |
| 	return uint64SliceAsByteSlice(bc.bitmap)
 | |
| }
 | |
| 
 | |
| // Deserialization code follows
 | |
| 
 | |
| ////
 | |
| // These methods (byteSliceAsUint16Slice,...) do not make copies,
 | |
| // they are pointer-based (unsafe). The caller is responsible to
 | |
| // ensure that the input slice does not get garbage collected, deleted
 | |
| // or modified while you hold the returned slince.
 | |
| ////
 | |
| func byteSliceAsUint16Slice(slice []byte) (result []uint16) { // here we create a new slice holder
 | |
| 	if len(slice)%2 != 0 {
 | |
| 		panic("Slice size should be divisible by 2")
 | |
| 	}
 | |
| 	// reference: https://go101.org/article/unsafe.html
 | |
| 
 | |
| 	// make a new slice header
 | |
| 	bHeader := (*reflect.SliceHeader)(unsafe.Pointer(&slice))
 | |
| 	rHeader := (*reflect.SliceHeader)(unsafe.Pointer(&result))
 | |
| 
 | |
| 	// transfer the data from the given slice to a new variable (our result)
 | |
| 	rHeader.Data = bHeader.Data
 | |
| 	rHeader.Len = bHeader.Len / 2
 | |
| 	rHeader.Cap = bHeader.Cap / 2
 | |
| 
 | |
| 	// instantiate result and use KeepAlive so data isn't unmapped.
 | |
| 	runtime.KeepAlive(&slice) // it is still crucial, GC can free it)
 | |
| 
 | |
| 	// return result
 | |
| 	return
 | |
| }
 | |
| 
 | |
| func byteSliceAsUint64Slice(slice []byte) (result []uint64) {
 | |
| 	if len(slice)%8 != 0 {
 | |
| 		panic("Slice size should be divisible by 8")
 | |
| 	}
 | |
| 	// reference: https://go101.org/article/unsafe.html
 | |
| 
 | |
| 	// make a new slice header
 | |
| 	bHeader := (*reflect.SliceHeader)(unsafe.Pointer(&slice))
 | |
| 	rHeader := (*reflect.SliceHeader)(unsafe.Pointer(&result))
 | |
| 
 | |
| 	// transfer the data from the given slice to a new variable (our result)
 | |
| 	rHeader.Data = bHeader.Data
 | |
| 	rHeader.Len = bHeader.Len / 8
 | |
| 	rHeader.Cap = bHeader.Cap / 8
 | |
| 
 | |
| 	// instantiate result and use KeepAlive so data isn't unmapped.
 | |
| 	runtime.KeepAlive(&slice) // it is still crucial, GC can free it)
 | |
| 
 | |
| 	// return result
 | |
| 	return
 | |
| }
 | |
| 
 | |
| func byteSliceAsInterval16Slice(slice []byte) (result []interval16) {
 | |
| 	if len(slice)%4 != 0 {
 | |
| 		panic("Slice size should be divisible by 4")
 | |
| 	}
 | |
| 	// reference: https://go101.org/article/unsafe.html
 | |
| 
 | |
| 	// make a new slice header
 | |
| 	bHeader := (*reflect.SliceHeader)(unsafe.Pointer(&slice))
 | |
| 	rHeader := (*reflect.SliceHeader)(unsafe.Pointer(&result))
 | |
| 
 | |
| 	// transfer the data from the given slice to a new variable (our result)
 | |
| 	rHeader.Data = bHeader.Data
 | |
| 	rHeader.Len = bHeader.Len / 4
 | |
| 	rHeader.Cap = bHeader.Cap / 4
 | |
| 
 | |
| 	// instantiate result and use KeepAlive so data isn't unmapped.
 | |
| 	runtime.KeepAlive(&slice) // it is still crucial, GC can free it)
 | |
| 
 | |
| 	// return result
 | |
| 	return
 | |
| }
 | |
| 
 | |
| // FromBuffer creates a bitmap from its serialized version stored in buffer.
 | |
| // It uses CRoaring's frozen bitmap format.
 | |
| //
 | |
| // The format specification is available here:
 | |
| // https://github.com/RoaringBitmap/CRoaring/blob/2c867e9f9c9e2a3a7032791f94c4c7ae3013f6e0/src/roaring.c#L2756-L2783
 | |
| //
 | |
| // The provided byte array (buf) is expected to be a constant.
 | |
| // The function makes the best effort attempt not to copy data.
 | |
| // Only little endian is supported. The function will err if it detects a big
 | |
| // endian serialized file.
 | |
| // You should take care not to modify buff as it will likely result in
 | |
| // unexpected program behavior.
 | |
| // If said buffer comes from a memory map, it's advisable to give it read
 | |
| // only permissions, either at creation or by calling Mprotect from the
 | |
| // golang.org/x/sys/unix package.
 | |
| //
 | |
| // Resulting bitmaps are effectively immutable in the following sense:
 | |
| // a copy-on-write marker is used so that when you modify the resulting
 | |
| // bitmap, copies of selected data (containers) are made.
 | |
| // You should *not* change the copy-on-write status of the resulting
 | |
| // bitmaps (SetCopyOnWrite).
 | |
| //
 | |
| // If buf becomes unavailable, then a bitmap created with
 | |
| // FromBuffer would be effectively broken. Furthermore, any
 | |
| // bitmap derived from this bitmap (e.g., via Or, And) might
 | |
| // also be broken. Thus, before making buf unavailable, you should
 | |
| // call CloneCopyOnWriteContainers on all such bitmaps.
 | |
| //
 | |
| func (rb *Bitmap) FrozenView(buf []byte) error {
 | |
| 	return rb.highlowcontainer.frozenView(buf)
 | |
| }
 | |
| 
 | |
| /* Verbatim specification from CRoaring.
 | |
|  *
 | |
|  * FROZEN SERIALIZATION FORMAT DESCRIPTION
 | |
|  *
 | |
|  * -- (beginning must be aligned by 32 bytes) --
 | |
|  * <bitset_data> uint64_t[BITSET_CONTAINER_SIZE_IN_WORDS * num_bitset_containers]
 | |
|  * <run_data>    rle16_t[total number of rle elements in all run containers]
 | |
|  * <array_data>  uint16_t[total number of array elements in all array containers]
 | |
|  * <keys>        uint16_t[num_containers]
 | |
|  * <counts>      uint16_t[num_containers]
 | |
|  * <typecodes>   uint8_t[num_containers]
 | |
|  * <header>      uint32_t
 | |
|  *
 | |
|  * <header> is a 4-byte value which is a bit union of FROZEN_COOKIE (15 bits)
 | |
|  * and the number of containers (17 bits).
 | |
|  *
 | |
|  * <counts> stores number of elements for every container.
 | |
|  * Its meaning depends on container type.
 | |
|  * For array and bitset containers, this value is the container cardinality minus one.
 | |
|  * For run container, it is the number of rle_t elements (n_runs).
 | |
|  *
 | |
|  * <bitset_data>,<array_data>,<run_data> are flat arrays of elements of
 | |
|  * all containers of respective type.
 | |
|  *
 | |
|  * <*_data> and <keys> are kept close together because they are not accessed
 | |
|  * during deserilization. This may reduce IO in case of large mmaped bitmaps.
 | |
|  * All members have their native alignments during deserilization except <header>,
 | |
|  * which is not guaranteed to be aligned by 4 bytes.
 | |
|  */
 | |
| const FROZEN_COOKIE = 13766
 | |
| 
 | |
| var (
 | |
| 	FrozenBitmapInvalidCookie = errors.New("header does not contain the FROZEN_COOKIE")
 | |
| 	FrozenBitmapBigEndian = errors.New("loading big endian frozen bitmaps is not supported")
 | |
| 	FrozenBitmapIncomplete = errors.New("input buffer too small to contain a frozen bitmap")
 | |
| 	FrozenBitmapOverpopulated = errors.New("too many containers")
 | |
| 	FrozenBitmapUnexpectedData = errors.New("spurious data in input")
 | |
| 	FrozenBitmapInvalidTypecode = errors.New("unrecognized typecode")
 | |
| 	FrozenBitmapBufferTooSmall = errors.New("buffer too small")
 | |
| )
 | |
| 
 | |
| func (ra *roaringArray) frozenView(buf []byte) error {
 | |
| 	if len(buf) < 4 {
 | |
| 		return FrozenBitmapIncomplete
 | |
| 	}
 | |
| 
 | |
| 	headerBE := binary.BigEndian.Uint32(buf[len(buf)-4:])
 | |
| 	if headerBE & 0x7fff == FROZEN_COOKIE {
 | |
| 		return FrozenBitmapBigEndian
 | |
| 	}
 | |
| 
 | |
| 	header := binary.LittleEndian.Uint32(buf[len(buf)-4:])
 | |
| 	buf = buf[:len(buf)-4]
 | |
| 
 | |
| 	if header & 0x7fff != FROZEN_COOKIE {
 | |
| 		return FrozenBitmapInvalidCookie
 | |
| 	}
 | |
| 
 | |
| 	nCont := int(header >> 15)
 | |
| 	if nCont > (1 << 16) {
 | |
| 		return FrozenBitmapOverpopulated
 | |
| 	}
 | |
| 
 | |
| 	// 1 byte per type, 2 bytes per key, 2 bytes per count.
 | |
| 	if len(buf) < 5*nCont {
 | |
| 		return FrozenBitmapIncomplete
 | |
| 	}
 | |
| 
 | |
| 	types := buf[len(buf)-nCont:]
 | |
| 	buf = buf[:len(buf)-nCont]
 | |
| 
 | |
| 	counts := byteSliceAsUint16Slice(buf[len(buf)-2*nCont:])
 | |
| 	buf = buf[:len(buf)-2*nCont]
 | |
| 
 | |
| 	keys := byteSliceAsUint16Slice(buf[len(buf)-2*nCont:])
 | |
| 	buf = buf[:len(buf)-2*nCont]
 | |
| 
 | |
| 	nBitmap, nArray, nRun := uint64(0), uint64(0), uint64(0)
 | |
| 	nArrayEl, nRunEl := uint64(0), uint64(0)
 | |
| 	for i, t := range types {
 | |
| 		switch (t) {
 | |
| 		case 1:
 | |
| 			nBitmap++
 | |
| 		case 2:
 | |
| 			nArray++
 | |
| 			nArrayEl += uint64(counts[i])+1
 | |
| 		case 3:
 | |
| 			nRun++
 | |
| 			nRunEl += uint64(counts[i])
 | |
| 		default:
 | |
| 			return FrozenBitmapInvalidTypecode
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if uint64(len(buf)) < (1 << 13)*nBitmap + 4*nRunEl + 2*nArrayEl {
 | |
| 		return FrozenBitmapIncomplete
 | |
| 	}
 | |
| 
 | |
| 	bitsetsArena := byteSliceAsUint64Slice(buf[:(1 << 13)*nBitmap])
 | |
| 	buf = buf[(1 << 13)*nBitmap:]
 | |
| 
 | |
| 	runsArena := byteSliceAsInterval16Slice(buf[:4*nRunEl])
 | |
| 	buf = buf[4*nRunEl:]
 | |
| 
 | |
| 	arraysArena := byteSliceAsUint16Slice(buf[:2*nArrayEl])
 | |
| 	buf = buf[2*nArrayEl:]
 | |
| 
 | |
| 	if len(buf) != 0 {
 | |
| 		return FrozenBitmapUnexpectedData
 | |
| 	}
 | |
| 
 | |
| 	// TODO: maybe arena_alloc all this.
 | |
| 	containers := make([]container, nCont)
 | |
| 	bitsets := make([]bitmapContainer, nBitmap)
 | |
| 	arrays := make([]arrayContainer, nArray)
 | |
| 	runs := make([]runContainer16, nRun)
 | |
| 	needCOW := make([]bool, nCont)
 | |
| 
 | |
| 	iBitset, iArray, iRun := uint64(0), uint64(0), uint64(0)
 | |
| 	for i, t := range types {
 | |
| 		needCOW[i] = true
 | |
| 
 | |
| 		switch (t) {
 | |
| 		case 1:
 | |
| 			containers[i] = &bitsets[iBitset]
 | |
| 			bitsets[iBitset].cardinality = int(counts[i])+1
 | |
| 			bitsets[iBitset].bitmap = bitsetsArena[:1024]
 | |
| 			bitsetsArena = bitsetsArena[1024:]
 | |
| 			iBitset++
 | |
| 		case 2:
 | |
| 			containers[i] = &arrays[iArray]
 | |
| 			arrays[iArray].content = arraysArena[:counts[i]+1]
 | |
| 			arraysArena = arraysArena[counts[i]+1:]
 | |
| 			iArray++
 | |
| 		case 3:
 | |
| 			containers[i] = &runs[iRun]
 | |
| 			runs[iRun].iv = runsArena[:counts[i]]
 | |
| 			runsArena = runsArena[counts[i]:]
 | |
| 			iRun++
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	// Not consuming the full input is a bug.
 | |
| 	if iBitset != nBitmap || len(bitsetsArena) != 0 ||
 | |
| 		iArray != nArray || len(arraysArena) != 0 ||
 | |
| 		iRun != nRun || len(runsArena) != 0 {
 | |
| 		panic("we missed something")
 | |
| 	}
 | |
| 
 | |
| 	ra.keys = keys
 | |
| 	ra.containers = containers
 | |
| 	ra.needCopyOnWrite = needCOW
 | |
| 	ra.copyOnWrite = true
 | |
| 
 | |
| 	return nil
 | |
| }
 | |
| 
 | |
| func (bm *Bitmap) GetFrozenSizeInBytes() uint64 {
 | |
| 	nBits, nArrayEl, nRunEl := uint64(0), uint64(0), uint64(0)
 | |
| 	for _, c := range bm.highlowcontainer.containers {
 | |
| 		switch v := c.(type) {
 | |
| 		case *bitmapContainer:
 | |
| 			nBits++
 | |
| 		case *arrayContainer:
 | |
| 			nArrayEl += uint64(len(v.content))
 | |
| 		case *runContainer16:
 | |
| 			nRunEl += uint64(len(v.iv))
 | |
| 		}
 | |
| 	}
 | |
| 	return 4 + 5*uint64(len(bm.highlowcontainer.containers)) +
 | |
| 		(nBits << 13) + 2*nArrayEl + 4*nRunEl
 | |
| }
 | |
| 
 | |
| func (bm *Bitmap) Freeze() ([]byte, error) {
 | |
| 	sz := bm.GetFrozenSizeInBytes()
 | |
| 	buf := make([]byte, sz)
 | |
| 	_, err := bm.FreezeTo(buf)
 | |
| 	return buf, err
 | |
| }
 | |
| 
 | |
| func (bm *Bitmap) FreezeTo(buf []byte) (int, error) {
 | |
| 	containers := bm.highlowcontainer.containers
 | |
| 	nCont := len(containers)
 | |
| 
 | |
| 	nBits, nArrayEl, nRunEl := 0, 0, 0
 | |
| 	for _, c := range containers {
 | |
| 		switch v := c.(type) {
 | |
| 		case *bitmapContainer:
 | |
| 			nBits++
 | |
| 		case *arrayContainer:
 | |
| 			nArrayEl += len(v.content)
 | |
| 		case *runContainer16:
 | |
| 			nRunEl += len(v.iv)
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	serialSize := 4 + 5*nCont + (1 << 13)*nBits + 4*nRunEl + 2*nArrayEl
 | |
| 	if len(buf) < serialSize {
 | |
| 		return 0, FrozenBitmapBufferTooSmall
 | |
| 	}
 | |
| 
 | |
| 	bitsArena := byteSliceAsUint64Slice(buf[:(1 << 13)*nBits])
 | |
| 	buf = buf[(1 << 13)*nBits:]
 | |
| 
 | |
| 	runsArena := byteSliceAsInterval16Slice(buf[:4*nRunEl])
 | |
| 	buf = buf[4*nRunEl:]
 | |
| 
 | |
| 	arraysArena := byteSliceAsUint16Slice(buf[:2*nArrayEl])
 | |
| 	buf = buf[2*nArrayEl:]
 | |
| 
 | |
| 	keys := byteSliceAsUint16Slice(buf[:2*nCont])
 | |
| 	buf = buf[2*nCont:]
 | |
| 
 | |
| 	counts := byteSliceAsUint16Slice(buf[:2*nCont])
 | |
| 	buf = buf[2*nCont:]
 | |
| 
 | |
| 	types := buf[:nCont]
 | |
| 	buf = buf[nCont:]
 | |
| 
 | |
| 	header := uint32(FROZEN_COOKIE|(nCont << 15))
 | |
| 	binary.LittleEndian.PutUint32(buf[:4], header)
 | |
| 
 | |
| 	copy(keys, bm.highlowcontainer.keys[:])
 | |
| 
 | |
| 	for i, c := range containers {
 | |
| 		switch v := c.(type) {
 | |
| 		case *bitmapContainer:
 | |
| 			copy(bitsArena, v.bitmap)
 | |
| 			bitsArena = bitsArena[1024:]
 | |
| 			counts[i] = uint16(v.cardinality-1)
 | |
| 			types[i] = 1
 | |
| 		case *arrayContainer:
 | |
| 			copy(arraysArena, v.content)
 | |
| 			arraysArena = arraysArena[len(v.content):]
 | |
| 			elems := len(v.content)
 | |
| 			counts[i] = uint16(elems)-1
 | |
| 			types[i] = 2
 | |
| 		case *runContainer16:
 | |
| 			copy(runsArena, v.iv)
 | |
| 			runs := len(v.iv)
 | |
| 			runsArena = runsArena[runs:]
 | |
| 			counts[i] = uint16(runs)
 | |
| 			types[i] = 3
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return serialSize, nil
 | |
| }
 |