mirror of
				https://github.com/go-gitea/gitea.git
				synced 2025-10-29 10:57:44 +09:00 
			
		
		
		
	* update github.com/blevesearch/bleve v2.0.2 -> v2.0.3 * github.com/denisenkom/go-mssqldb v0.9.0 -> v0.10.0 * github.com/editorconfig/editorconfig-core-go v2.4.1 -> v2.4.2 * github.com/go-chi/cors v1.1.1 -> v1.2.0 * github.com/go-git/go-billy v5.0.0 -> v5.1.0 * github.com/go-git/go-git v5.2.0 -> v5.3.0 * github.com/go-ldap/ldap v3.2.4 -> v3.3.0 * github.com/go-redis/redis v8.6.0 -> v8.8.2 * github.com/go-sql-driver/mysql v1.5.0 -> v1.6.0 * github.com/go-swagger/go-swagger v0.26.1 -> v0.27.0 * github.com/lib/pq v1.9.0 -> v1.10.1 * github.com/mattn/go-sqlite3 v1.14.6 -> v1.14.7 * github.com/go-testfixtures/testfixtures v3.5.0 -> v3.6.0 * github.com/issue9/identicon v1.0.1 -> v1.2.0 * github.com/klauspost/compress v1.11.8 -> v1.12.1 * github.com/mgechev/revive v1.0.3 -> v1.0.6 * github.com/microcosm-cc/bluemonday v1.0.7 -> v1.0.8 * github.com/niklasfasching/go-org v1.4.0 -> v1.5.0 * github.com/olivere/elastic v7.0.22 -> v7.0.24 * github.com/pelletier/go-toml v1.8.1 -> v1.9.0 * github.com/prometheus/client_golang v1.9.0 -> v1.10.0 * github.com/xanzy/go-gitlab v0.44.0 -> v0.48.0 * github.com/yuin/goldmark v1.3.3 -> v1.3.5 * github.com/6543/go-version v1.2.4 -> v1.3.1 * do github.com/lib/pq v1.10.0 -> v1.10.1 again ...
		
			
				
	
	
		
			684 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			Go
		
	
	
	
		
			Vendored
		
	
	
	
			
		
		
	
	
			684 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			Go
		
	
	
	
		
			Vendored
		
	
	
	
| // Copyright 2018 Klaus Post. All rights reserved.
 | |
| // Use of this source code is governed by a BSD-style
 | |
| // license that can be found in the LICENSE file.
 | |
| // Based on work Copyright (c) 2013, Yann Collet, released under BSD License.
 | |
| 
 | |
| package fse
 | |
| 
 | |
| import (
 | |
| 	"errors"
 | |
| 	"fmt"
 | |
| )
 | |
| 
 | |
| // Compress the input bytes. Input must be < 2GB.
 | |
| // Provide a Scratch buffer to avoid memory allocations.
 | |
| // Note that the output is also kept in the scratch buffer.
 | |
| // If input is too hard to compress, ErrIncompressible is returned.
 | |
| // If input is a single byte value repeated ErrUseRLE is returned.
 | |
| func Compress(in []byte, s *Scratch) ([]byte, error) {
 | |
| 	if len(in) <= 1 {
 | |
| 		return nil, ErrIncompressible
 | |
| 	}
 | |
| 	if len(in) > (2<<30)-1 {
 | |
| 		return nil, errors.New("input too big, must be < 2GB")
 | |
| 	}
 | |
| 	s, err := s.prepare(in)
 | |
| 	if err != nil {
 | |
| 		return nil, err
 | |
| 	}
 | |
| 
 | |
| 	// Create histogram, if none was provided.
 | |
| 	maxCount := s.maxCount
 | |
| 	if maxCount == 0 {
 | |
| 		maxCount = s.countSimple(in)
 | |
| 	}
 | |
| 	// Reset for next run.
 | |
| 	s.clearCount = true
 | |
| 	s.maxCount = 0
 | |
| 	if maxCount == len(in) {
 | |
| 		// One symbol, use RLE
 | |
| 		return nil, ErrUseRLE
 | |
| 	}
 | |
| 	if maxCount == 1 || maxCount < (len(in)>>7) {
 | |
| 		// Each symbol present maximum once or too well distributed.
 | |
| 		return nil, ErrIncompressible
 | |
| 	}
 | |
| 	s.optimalTableLog()
 | |
| 	err = s.normalizeCount()
 | |
| 	if err != nil {
 | |
| 		return nil, err
 | |
| 	}
 | |
| 	err = s.writeCount()
 | |
| 	if err != nil {
 | |
| 		return nil, err
 | |
| 	}
 | |
| 
 | |
| 	if false {
 | |
| 		err = s.validateNorm()
 | |
| 		if err != nil {
 | |
| 			return nil, err
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	err = s.buildCTable()
 | |
| 	if err != nil {
 | |
| 		return nil, err
 | |
| 	}
 | |
| 	err = s.compress(in)
 | |
| 	if err != nil {
 | |
| 		return nil, err
 | |
| 	}
 | |
| 	s.Out = s.bw.out
 | |
| 	// Check if we compressed.
 | |
| 	if len(s.Out) >= len(in) {
 | |
| 		return nil, ErrIncompressible
 | |
| 	}
 | |
| 	return s.Out, nil
 | |
| }
 | |
| 
 | |
| // cState contains the compression state of a stream.
 | |
| type cState struct {
 | |
| 	bw         *bitWriter
 | |
| 	stateTable []uint16
 | |
| 	state      uint16
 | |
| }
 | |
| 
 | |
| // init will initialize the compression state to the first symbol of the stream.
 | |
| func (c *cState) init(bw *bitWriter, ct *cTable, tableLog uint8, first symbolTransform) {
 | |
| 	c.bw = bw
 | |
| 	c.stateTable = ct.stateTable
 | |
| 
 | |
| 	nbBitsOut := (first.deltaNbBits + (1 << 15)) >> 16
 | |
| 	im := int32((nbBitsOut << 16) - first.deltaNbBits)
 | |
| 	lu := (im >> nbBitsOut) + first.deltaFindState
 | |
| 	c.state = c.stateTable[lu]
 | |
| }
 | |
| 
 | |
| // encode the output symbol provided and write it to the bitstream.
 | |
| func (c *cState) encode(symbolTT symbolTransform) {
 | |
| 	nbBitsOut := (uint32(c.state) + symbolTT.deltaNbBits) >> 16
 | |
| 	dstState := int32(c.state>>(nbBitsOut&15)) + symbolTT.deltaFindState
 | |
| 	c.bw.addBits16NC(c.state, uint8(nbBitsOut))
 | |
| 	c.state = c.stateTable[dstState]
 | |
| }
 | |
| 
 | |
| // encode the output symbol provided and write it to the bitstream.
 | |
| func (c *cState) encodeZero(symbolTT symbolTransform) {
 | |
| 	nbBitsOut := (uint32(c.state) + symbolTT.deltaNbBits) >> 16
 | |
| 	dstState := int32(c.state>>(nbBitsOut&15)) + symbolTT.deltaFindState
 | |
| 	c.bw.addBits16ZeroNC(c.state, uint8(nbBitsOut))
 | |
| 	c.state = c.stateTable[dstState]
 | |
| }
 | |
| 
 | |
| // flush will write the tablelog to the output and flush the remaining full bytes.
 | |
| func (c *cState) flush(tableLog uint8) {
 | |
| 	c.bw.flush32()
 | |
| 	c.bw.addBits16NC(c.state, tableLog)
 | |
| 	c.bw.flush()
 | |
| }
 | |
| 
 | |
| // compress is the main compression loop that will encode the input from the last byte to the first.
 | |
| func (s *Scratch) compress(src []byte) error {
 | |
| 	if len(src) <= 2 {
 | |
| 		return errors.New("compress: src too small")
 | |
| 	}
 | |
| 	tt := s.ct.symbolTT[:256]
 | |
| 	s.bw.reset(s.Out)
 | |
| 
 | |
| 	// Our two states each encodes every second byte.
 | |
| 	// Last byte encoded (first byte decoded) will always be encoded by c1.
 | |
| 	var c1, c2 cState
 | |
| 
 | |
| 	// Encode so remaining size is divisible by 4.
 | |
| 	ip := len(src)
 | |
| 	if ip&1 == 1 {
 | |
| 		c1.init(&s.bw, &s.ct, s.actualTableLog, tt[src[ip-1]])
 | |
| 		c2.init(&s.bw, &s.ct, s.actualTableLog, tt[src[ip-2]])
 | |
| 		c1.encodeZero(tt[src[ip-3]])
 | |
| 		ip -= 3
 | |
| 	} else {
 | |
| 		c2.init(&s.bw, &s.ct, s.actualTableLog, tt[src[ip-1]])
 | |
| 		c1.init(&s.bw, &s.ct, s.actualTableLog, tt[src[ip-2]])
 | |
| 		ip -= 2
 | |
| 	}
 | |
| 	if ip&2 != 0 {
 | |
| 		c2.encodeZero(tt[src[ip-1]])
 | |
| 		c1.encodeZero(tt[src[ip-2]])
 | |
| 		ip -= 2
 | |
| 	}
 | |
| 
 | |
| 	// Main compression loop.
 | |
| 	switch {
 | |
| 	case !s.zeroBits && s.actualTableLog <= 8:
 | |
| 		// We can encode 4 symbols without requiring a flush.
 | |
| 		// We do not need to check if any output is 0 bits.
 | |
| 		for ip >= 4 {
 | |
| 			s.bw.flush32()
 | |
| 			v3, v2, v1, v0 := src[ip-4], src[ip-3], src[ip-2], src[ip-1]
 | |
| 			c2.encode(tt[v0])
 | |
| 			c1.encode(tt[v1])
 | |
| 			c2.encode(tt[v2])
 | |
| 			c1.encode(tt[v3])
 | |
| 			ip -= 4
 | |
| 		}
 | |
| 	case !s.zeroBits:
 | |
| 		// We do not need to check if any output is 0 bits.
 | |
| 		for ip >= 4 {
 | |
| 			s.bw.flush32()
 | |
| 			v3, v2, v1, v0 := src[ip-4], src[ip-3], src[ip-2], src[ip-1]
 | |
| 			c2.encode(tt[v0])
 | |
| 			c1.encode(tt[v1])
 | |
| 			s.bw.flush32()
 | |
| 			c2.encode(tt[v2])
 | |
| 			c1.encode(tt[v3])
 | |
| 			ip -= 4
 | |
| 		}
 | |
| 	case s.actualTableLog <= 8:
 | |
| 		// We can encode 4 symbols without requiring a flush
 | |
| 		for ip >= 4 {
 | |
| 			s.bw.flush32()
 | |
| 			v3, v2, v1, v0 := src[ip-4], src[ip-3], src[ip-2], src[ip-1]
 | |
| 			c2.encodeZero(tt[v0])
 | |
| 			c1.encodeZero(tt[v1])
 | |
| 			c2.encodeZero(tt[v2])
 | |
| 			c1.encodeZero(tt[v3])
 | |
| 			ip -= 4
 | |
| 		}
 | |
| 	default:
 | |
| 		for ip >= 4 {
 | |
| 			s.bw.flush32()
 | |
| 			v3, v2, v1, v0 := src[ip-4], src[ip-3], src[ip-2], src[ip-1]
 | |
| 			c2.encodeZero(tt[v0])
 | |
| 			c1.encodeZero(tt[v1])
 | |
| 			s.bw.flush32()
 | |
| 			c2.encodeZero(tt[v2])
 | |
| 			c1.encodeZero(tt[v3])
 | |
| 			ip -= 4
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	// Flush final state.
 | |
| 	// Used to initialize state when decoding.
 | |
| 	c2.flush(s.actualTableLog)
 | |
| 	c1.flush(s.actualTableLog)
 | |
| 
 | |
| 	return s.bw.close()
 | |
| }
 | |
| 
 | |
| // writeCount will write the normalized histogram count to header.
 | |
| // This is read back by readNCount.
 | |
| func (s *Scratch) writeCount() error {
 | |
| 	var (
 | |
| 		tableLog  = s.actualTableLog
 | |
| 		tableSize = 1 << tableLog
 | |
| 		previous0 bool
 | |
| 		charnum   uint16
 | |
| 
 | |
| 		maxHeaderSize = ((int(s.symbolLen) * int(tableLog)) >> 3) + 3
 | |
| 
 | |
| 		// Write Table Size
 | |
| 		bitStream = uint32(tableLog - minTablelog)
 | |
| 		bitCount  = uint(4)
 | |
| 		remaining = int16(tableSize + 1) /* +1 for extra accuracy */
 | |
| 		threshold = int16(tableSize)
 | |
| 		nbBits    = uint(tableLog + 1)
 | |
| 	)
 | |
| 	if cap(s.Out) < maxHeaderSize {
 | |
| 		s.Out = make([]byte, 0, s.br.remain()+maxHeaderSize)
 | |
| 	}
 | |
| 	outP := uint(0)
 | |
| 	out := s.Out[:maxHeaderSize]
 | |
| 
 | |
| 	// stops at 1
 | |
| 	for remaining > 1 {
 | |
| 		if previous0 {
 | |
| 			start := charnum
 | |
| 			for s.norm[charnum] == 0 {
 | |
| 				charnum++
 | |
| 			}
 | |
| 			for charnum >= start+24 {
 | |
| 				start += 24
 | |
| 				bitStream += uint32(0xFFFF) << bitCount
 | |
| 				out[outP] = byte(bitStream)
 | |
| 				out[outP+1] = byte(bitStream >> 8)
 | |
| 				outP += 2
 | |
| 				bitStream >>= 16
 | |
| 			}
 | |
| 			for charnum >= start+3 {
 | |
| 				start += 3
 | |
| 				bitStream += 3 << bitCount
 | |
| 				bitCount += 2
 | |
| 			}
 | |
| 			bitStream += uint32(charnum-start) << bitCount
 | |
| 			bitCount += 2
 | |
| 			if bitCount > 16 {
 | |
| 				out[outP] = byte(bitStream)
 | |
| 				out[outP+1] = byte(bitStream >> 8)
 | |
| 				outP += 2
 | |
| 				bitStream >>= 16
 | |
| 				bitCount -= 16
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		count := s.norm[charnum]
 | |
| 		charnum++
 | |
| 		max := (2*threshold - 1) - remaining
 | |
| 		if count < 0 {
 | |
| 			remaining += count
 | |
| 		} else {
 | |
| 			remaining -= count
 | |
| 		}
 | |
| 		count++ // +1 for extra accuracy
 | |
| 		if count >= threshold {
 | |
| 			count += max // [0..max[ [max..threshold[ (...) [threshold+max 2*threshold[
 | |
| 		}
 | |
| 		bitStream += uint32(count) << bitCount
 | |
| 		bitCount += nbBits
 | |
| 		if count < max {
 | |
| 			bitCount--
 | |
| 		}
 | |
| 
 | |
| 		previous0 = count == 1
 | |
| 		if remaining < 1 {
 | |
| 			return errors.New("internal error: remaining<1")
 | |
| 		}
 | |
| 		for remaining < threshold {
 | |
| 			nbBits--
 | |
| 			threshold >>= 1
 | |
| 		}
 | |
| 
 | |
| 		if bitCount > 16 {
 | |
| 			out[outP] = byte(bitStream)
 | |
| 			out[outP+1] = byte(bitStream >> 8)
 | |
| 			outP += 2
 | |
| 			bitStream >>= 16
 | |
| 			bitCount -= 16
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	out[outP] = byte(bitStream)
 | |
| 	out[outP+1] = byte(bitStream >> 8)
 | |
| 	outP += (bitCount + 7) / 8
 | |
| 
 | |
| 	if charnum > s.symbolLen {
 | |
| 		return errors.New("internal error: charnum > s.symbolLen")
 | |
| 	}
 | |
| 	s.Out = out[:outP]
 | |
| 	return nil
 | |
| }
 | |
| 
 | |
| // symbolTransform contains the state transform for a symbol.
 | |
| type symbolTransform struct {
 | |
| 	deltaFindState int32
 | |
| 	deltaNbBits    uint32
 | |
| }
 | |
| 
 | |
| // String prints values as a human readable string.
 | |
| func (s symbolTransform) String() string {
 | |
| 	return fmt.Sprintf("dnbits: %08x, fs:%d", s.deltaNbBits, s.deltaFindState)
 | |
| }
 | |
| 
 | |
| // cTable contains tables used for compression.
 | |
| type cTable struct {
 | |
| 	tableSymbol []byte
 | |
| 	stateTable  []uint16
 | |
| 	symbolTT    []symbolTransform
 | |
| }
 | |
| 
 | |
| // allocCtable will allocate tables needed for compression.
 | |
| // If existing tables a re big enough, they are simply re-used.
 | |
| func (s *Scratch) allocCtable() {
 | |
| 	tableSize := 1 << s.actualTableLog
 | |
| 	// get tableSymbol that is big enough.
 | |
| 	if cap(s.ct.tableSymbol) < tableSize {
 | |
| 		s.ct.tableSymbol = make([]byte, tableSize)
 | |
| 	}
 | |
| 	s.ct.tableSymbol = s.ct.tableSymbol[:tableSize]
 | |
| 
 | |
| 	ctSize := tableSize
 | |
| 	if cap(s.ct.stateTable) < ctSize {
 | |
| 		s.ct.stateTable = make([]uint16, ctSize)
 | |
| 	}
 | |
| 	s.ct.stateTable = s.ct.stateTable[:ctSize]
 | |
| 
 | |
| 	if cap(s.ct.symbolTT) < 256 {
 | |
| 		s.ct.symbolTT = make([]symbolTransform, 256)
 | |
| 	}
 | |
| 	s.ct.symbolTT = s.ct.symbolTT[:256]
 | |
| }
 | |
| 
 | |
| // buildCTable will populate the compression table so it is ready to be used.
 | |
| func (s *Scratch) buildCTable() error {
 | |
| 	tableSize := uint32(1 << s.actualTableLog)
 | |
| 	highThreshold := tableSize - 1
 | |
| 	var cumul [maxSymbolValue + 2]int16
 | |
| 
 | |
| 	s.allocCtable()
 | |
| 	tableSymbol := s.ct.tableSymbol[:tableSize]
 | |
| 	// symbol start positions
 | |
| 	{
 | |
| 		cumul[0] = 0
 | |
| 		for ui, v := range s.norm[:s.symbolLen-1] {
 | |
| 			u := byte(ui) // one less than reference
 | |
| 			if v == -1 {
 | |
| 				// Low proba symbol
 | |
| 				cumul[u+1] = cumul[u] + 1
 | |
| 				tableSymbol[highThreshold] = u
 | |
| 				highThreshold--
 | |
| 			} else {
 | |
| 				cumul[u+1] = cumul[u] + v
 | |
| 			}
 | |
| 		}
 | |
| 		// Encode last symbol separately to avoid overflowing u
 | |
| 		u := int(s.symbolLen - 1)
 | |
| 		v := s.norm[s.symbolLen-1]
 | |
| 		if v == -1 {
 | |
| 			// Low proba symbol
 | |
| 			cumul[u+1] = cumul[u] + 1
 | |
| 			tableSymbol[highThreshold] = byte(u)
 | |
| 			highThreshold--
 | |
| 		} else {
 | |
| 			cumul[u+1] = cumul[u] + v
 | |
| 		}
 | |
| 		if uint32(cumul[s.symbolLen]) != tableSize {
 | |
| 			return fmt.Errorf("internal error: expected cumul[s.symbolLen] (%d) == tableSize (%d)", cumul[s.symbolLen], tableSize)
 | |
| 		}
 | |
| 		cumul[s.symbolLen] = int16(tableSize) + 1
 | |
| 	}
 | |
| 	// Spread symbols
 | |
| 	s.zeroBits = false
 | |
| 	{
 | |
| 		step := tableStep(tableSize)
 | |
| 		tableMask := tableSize - 1
 | |
| 		var position uint32
 | |
| 		// if any symbol > largeLimit, we may have 0 bits output.
 | |
| 		largeLimit := int16(1 << (s.actualTableLog - 1))
 | |
| 		for ui, v := range s.norm[:s.symbolLen] {
 | |
| 			symbol := byte(ui)
 | |
| 			if v > largeLimit {
 | |
| 				s.zeroBits = true
 | |
| 			}
 | |
| 			for nbOccurrences := int16(0); nbOccurrences < v; nbOccurrences++ {
 | |
| 				tableSymbol[position] = symbol
 | |
| 				position = (position + step) & tableMask
 | |
| 				for position > highThreshold {
 | |
| 					position = (position + step) & tableMask
 | |
| 				} /* Low proba area */
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		// Check if we have gone through all positions
 | |
| 		if position != 0 {
 | |
| 			return errors.New("position!=0")
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	// Build table
 | |
| 	table := s.ct.stateTable
 | |
| 	{
 | |
| 		tsi := int(tableSize)
 | |
| 		for u, v := range tableSymbol {
 | |
| 			// TableU16 : sorted by symbol order; gives next state value
 | |
| 			table[cumul[v]] = uint16(tsi + u)
 | |
| 			cumul[v]++
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	// Build Symbol Transformation Table
 | |
| 	{
 | |
| 		total := int16(0)
 | |
| 		symbolTT := s.ct.symbolTT[:s.symbolLen]
 | |
| 		tableLog := s.actualTableLog
 | |
| 		tl := (uint32(tableLog) << 16) - (1 << tableLog)
 | |
| 		for i, v := range s.norm[:s.symbolLen] {
 | |
| 			switch v {
 | |
| 			case 0:
 | |
| 			case -1, 1:
 | |
| 				symbolTT[i].deltaNbBits = tl
 | |
| 				symbolTT[i].deltaFindState = int32(total - 1)
 | |
| 				total++
 | |
| 			default:
 | |
| 				maxBitsOut := uint32(tableLog) - highBits(uint32(v-1))
 | |
| 				minStatePlus := uint32(v) << maxBitsOut
 | |
| 				symbolTT[i].deltaNbBits = (maxBitsOut << 16) - minStatePlus
 | |
| 				symbolTT[i].deltaFindState = int32(total - v)
 | |
| 				total += v
 | |
| 			}
 | |
| 		}
 | |
| 		if total != int16(tableSize) {
 | |
| 			return fmt.Errorf("total mismatch %d (got) != %d (want)", total, tableSize)
 | |
| 		}
 | |
| 	}
 | |
| 	return nil
 | |
| }
 | |
| 
 | |
| // countSimple will create a simple histogram in s.count.
 | |
| // Returns the biggest count.
 | |
| // Does not update s.clearCount.
 | |
| func (s *Scratch) countSimple(in []byte) (max int) {
 | |
| 	for _, v := range in {
 | |
| 		s.count[v]++
 | |
| 	}
 | |
| 	m := uint32(0)
 | |
| 	for i, v := range s.count[:] {
 | |
| 		if v > m {
 | |
| 			m = v
 | |
| 		}
 | |
| 		if v > 0 {
 | |
| 			s.symbolLen = uint16(i) + 1
 | |
| 		}
 | |
| 	}
 | |
| 	return int(m)
 | |
| }
 | |
| 
 | |
| // minTableLog provides the minimum logSize to safely represent a distribution.
 | |
| func (s *Scratch) minTableLog() uint8 {
 | |
| 	minBitsSrc := highBits(uint32(s.br.remain()-1)) + 1
 | |
| 	minBitsSymbols := highBits(uint32(s.symbolLen-1)) + 2
 | |
| 	if minBitsSrc < minBitsSymbols {
 | |
| 		return uint8(minBitsSrc)
 | |
| 	}
 | |
| 	return uint8(minBitsSymbols)
 | |
| }
 | |
| 
 | |
| // optimalTableLog calculates and sets the optimal tableLog in s.actualTableLog
 | |
| func (s *Scratch) optimalTableLog() {
 | |
| 	tableLog := s.TableLog
 | |
| 	minBits := s.minTableLog()
 | |
| 	maxBitsSrc := uint8(highBits(uint32(s.br.remain()-1))) - 2
 | |
| 	if maxBitsSrc < tableLog {
 | |
| 		// Accuracy can be reduced
 | |
| 		tableLog = maxBitsSrc
 | |
| 	}
 | |
| 	if minBits > tableLog {
 | |
| 		tableLog = minBits
 | |
| 	}
 | |
| 	// Need a minimum to safely represent all symbol values
 | |
| 	if tableLog < minTablelog {
 | |
| 		tableLog = minTablelog
 | |
| 	}
 | |
| 	if tableLog > maxTableLog {
 | |
| 		tableLog = maxTableLog
 | |
| 	}
 | |
| 	s.actualTableLog = tableLog
 | |
| }
 | |
| 
 | |
| var rtbTable = [...]uint32{0, 473195, 504333, 520860, 550000, 700000, 750000, 830000}
 | |
| 
 | |
| // normalizeCount will normalize the count of the symbols so
 | |
| // the total is equal to the table size.
 | |
| func (s *Scratch) normalizeCount() error {
 | |
| 	var (
 | |
| 		tableLog          = s.actualTableLog
 | |
| 		scale             = 62 - uint64(tableLog)
 | |
| 		step              = (1 << 62) / uint64(s.br.remain())
 | |
| 		vStep             = uint64(1) << (scale - 20)
 | |
| 		stillToDistribute = int16(1 << tableLog)
 | |
| 		largest           int
 | |
| 		largestP          int16
 | |
| 		lowThreshold      = (uint32)(s.br.remain() >> tableLog)
 | |
| 	)
 | |
| 
 | |
| 	for i, cnt := range s.count[:s.symbolLen] {
 | |
| 		// already handled
 | |
| 		// if (count[s] == s.length) return 0;   /* rle special case */
 | |
| 
 | |
| 		if cnt == 0 {
 | |
| 			s.norm[i] = 0
 | |
| 			continue
 | |
| 		}
 | |
| 		if cnt <= lowThreshold {
 | |
| 			s.norm[i] = -1
 | |
| 			stillToDistribute--
 | |
| 		} else {
 | |
| 			proba := (int16)((uint64(cnt) * step) >> scale)
 | |
| 			if proba < 8 {
 | |
| 				restToBeat := vStep * uint64(rtbTable[proba])
 | |
| 				v := uint64(cnt)*step - (uint64(proba) << scale)
 | |
| 				if v > restToBeat {
 | |
| 					proba++
 | |
| 				}
 | |
| 			}
 | |
| 			if proba > largestP {
 | |
| 				largestP = proba
 | |
| 				largest = i
 | |
| 			}
 | |
| 			s.norm[i] = proba
 | |
| 			stillToDistribute -= proba
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if -stillToDistribute >= (s.norm[largest] >> 1) {
 | |
| 		// corner case, need another normalization method
 | |
| 		return s.normalizeCount2()
 | |
| 	}
 | |
| 	s.norm[largest] += stillToDistribute
 | |
| 	return nil
 | |
| }
 | |
| 
 | |
| // Secondary normalization method.
 | |
| // To be used when primary method fails.
 | |
| func (s *Scratch) normalizeCount2() error {
 | |
| 	const notYetAssigned = -2
 | |
| 	var (
 | |
| 		distributed  uint32
 | |
| 		total        = uint32(s.br.remain())
 | |
| 		tableLog     = s.actualTableLog
 | |
| 		lowThreshold = total >> tableLog
 | |
| 		lowOne       = (total * 3) >> (tableLog + 1)
 | |
| 	)
 | |
| 	for i, cnt := range s.count[:s.symbolLen] {
 | |
| 		if cnt == 0 {
 | |
| 			s.norm[i] = 0
 | |
| 			continue
 | |
| 		}
 | |
| 		if cnt <= lowThreshold {
 | |
| 			s.norm[i] = -1
 | |
| 			distributed++
 | |
| 			total -= cnt
 | |
| 			continue
 | |
| 		}
 | |
| 		if cnt <= lowOne {
 | |
| 			s.norm[i] = 1
 | |
| 			distributed++
 | |
| 			total -= cnt
 | |
| 			continue
 | |
| 		}
 | |
| 		s.norm[i] = notYetAssigned
 | |
| 	}
 | |
| 	toDistribute := (1 << tableLog) - distributed
 | |
| 
 | |
| 	if (total / toDistribute) > lowOne {
 | |
| 		// risk of rounding to zero
 | |
| 		lowOne = (total * 3) / (toDistribute * 2)
 | |
| 		for i, cnt := range s.count[:s.symbolLen] {
 | |
| 			if (s.norm[i] == notYetAssigned) && (cnt <= lowOne) {
 | |
| 				s.norm[i] = 1
 | |
| 				distributed++
 | |
| 				total -= cnt
 | |
| 				continue
 | |
| 			}
 | |
| 		}
 | |
| 		toDistribute = (1 << tableLog) - distributed
 | |
| 	}
 | |
| 	if distributed == uint32(s.symbolLen)+1 {
 | |
| 		// all values are pretty poor;
 | |
| 		//   probably incompressible data (should have already been detected);
 | |
| 		//   find max, then give all remaining points to max
 | |
| 		var maxV int
 | |
| 		var maxC uint32
 | |
| 		for i, cnt := range s.count[:s.symbolLen] {
 | |
| 			if cnt > maxC {
 | |
| 				maxV = i
 | |
| 				maxC = cnt
 | |
| 			}
 | |
| 		}
 | |
| 		s.norm[maxV] += int16(toDistribute)
 | |
| 		return nil
 | |
| 	}
 | |
| 
 | |
| 	if total == 0 {
 | |
| 		// all of the symbols were low enough for the lowOne or lowThreshold
 | |
| 		for i := uint32(0); toDistribute > 0; i = (i + 1) % (uint32(s.symbolLen)) {
 | |
| 			if s.norm[i] > 0 {
 | |
| 				toDistribute--
 | |
| 				s.norm[i]++
 | |
| 			}
 | |
| 		}
 | |
| 		return nil
 | |
| 	}
 | |
| 
 | |
| 	var (
 | |
| 		vStepLog = 62 - uint64(tableLog)
 | |
| 		mid      = uint64((1 << (vStepLog - 1)) - 1)
 | |
| 		rStep    = (((1 << vStepLog) * uint64(toDistribute)) + mid) / uint64(total) // scale on remaining
 | |
| 		tmpTotal = mid
 | |
| 	)
 | |
| 	for i, cnt := range s.count[:s.symbolLen] {
 | |
| 		if s.norm[i] == notYetAssigned {
 | |
| 			var (
 | |
| 				end    = tmpTotal + uint64(cnt)*rStep
 | |
| 				sStart = uint32(tmpTotal >> vStepLog)
 | |
| 				sEnd   = uint32(end >> vStepLog)
 | |
| 				weight = sEnd - sStart
 | |
| 			)
 | |
| 			if weight < 1 {
 | |
| 				return errors.New("weight < 1")
 | |
| 			}
 | |
| 			s.norm[i] = int16(weight)
 | |
| 			tmpTotal = end
 | |
| 		}
 | |
| 	}
 | |
| 	return nil
 | |
| }
 | |
| 
 | |
| // validateNorm validates the normalized histogram table.
 | |
| func (s *Scratch) validateNorm() (err error) {
 | |
| 	var total int
 | |
| 	for _, v := range s.norm[:s.symbolLen] {
 | |
| 		if v >= 0 {
 | |
| 			total += int(v)
 | |
| 		} else {
 | |
| 			total -= int(v)
 | |
| 		}
 | |
| 	}
 | |
| 	defer func() {
 | |
| 		if err == nil {
 | |
| 			return
 | |
| 		}
 | |
| 		fmt.Printf("selected TableLog: %d, Symbol length: %d\n", s.actualTableLog, s.symbolLen)
 | |
| 		for i, v := range s.norm[:s.symbolLen] {
 | |
| 			fmt.Printf("%3d: %5d -> %4d \n", i, s.count[i], v)
 | |
| 		}
 | |
| 	}()
 | |
| 	if total != (1 << s.actualTableLog) {
 | |
| 		return fmt.Errorf("warning: Total == %d != %d", total, 1<<s.actualTableLog)
 | |
| 	}
 | |
| 	for i, v := range s.count[s.symbolLen:] {
 | |
| 		if v != 0 {
 | |
| 			return fmt.Errorf("warning: Found symbol out of range, %d after cut", i)
 | |
| 		}
 | |
| 	}
 | |
| 	return nil
 | |
| }
 |