mirror of
				https://github.com/go-gitea/gitea.git
				synced 2025-10-29 10:57:44 +09:00 
			
		
		
		
	
		
			
				
	
	
		
			317 lines
		
	
	
		
			8.0 KiB
		
	
	
	
		
			Go
		
	
	
	
		
			Vendored
		
	
	
	
			
		
		
	
	
			317 lines
		
	
	
		
			8.0 KiB
		
	
	
	
		
			Go
		
	
	
	
		
			Vendored
		
	
	
	
| package ecdh
 | |
| 
 | |
| import (
 | |
| 	"bytes"
 | |
| 	"crypto"
 | |
| 	"crypto/aes"
 | |
| 	"crypto/elliptic"
 | |
| 	"encoding/binary"
 | |
| 	"errors"
 | |
| 	"github.com/keybase/go-crypto/curve25519"
 | |
| 	"io"
 | |
| 	"math/big"
 | |
| )
 | |
| 
 | |
| type PublicKey struct {
 | |
| 	elliptic.Curve
 | |
| 	X, Y *big.Int
 | |
| }
 | |
| 
 | |
| type PrivateKey struct {
 | |
| 	PublicKey
 | |
| 	X *big.Int
 | |
| }
 | |
| 
 | |
| // KDF implements Key Derivation Function as described in
 | |
| // https://tools.ietf.org/html/rfc6637#section-7
 | |
| func (e *PublicKey) KDF(S []byte, kdfParams []byte, hash crypto.Hash) []byte {
 | |
| 	sLen := (e.Curve.Params().P.BitLen() + 7) / 8
 | |
| 	buf := new(bytes.Buffer)
 | |
| 	buf.Write([]byte{0, 0, 0, 1})
 | |
| 	if sLen > len(S) {
 | |
| 		// zero-pad the S. If we got invalid S (bigger than curve's
 | |
| 		// P), we are going to produce invalid key. Garbage in,
 | |
| 		// garbage out.
 | |
| 		buf.Write(make([]byte, sLen-len(S)))
 | |
| 	}
 | |
| 	buf.Write(S)
 | |
| 	buf.Write(kdfParams)
 | |
| 
 | |
| 	hashw := hash.New()
 | |
| 
 | |
| 	hashw.Write(buf.Bytes())
 | |
| 	key := hashw.Sum(nil)
 | |
| 
 | |
| 	return key
 | |
| }
 | |
| 
 | |
| // AESKeyUnwrap implements RFC 3394 Key Unwrapping. See
 | |
| // http://tools.ietf.org/html/rfc3394#section-2.2.1
 | |
| // Note: The second described algorithm ("index-based") is implemented
 | |
| // here.
 | |
| func AESKeyUnwrap(key, cipherText []byte) ([]byte, error) {
 | |
| 	if len(cipherText)%8 != 0 {
 | |
| 		return nil, errors.New("cipherText must by a multiple of 64 bits")
 | |
| 	}
 | |
| 
 | |
| 	cipher, err := aes.NewCipher(key)
 | |
| 	if err != nil {
 | |
| 		return nil, err
 | |
| 	}
 | |
| 
 | |
| 	nblocks := len(cipherText)/8 - 1
 | |
| 
 | |
| 	// 1) Initialize variables.
 | |
| 	// - Set A = C[0]
 | |
| 	var A [aes.BlockSize]byte
 | |
| 	copy(A[:8], cipherText[:8])
 | |
| 
 | |
| 	// For i = 1 to n
 | |
| 	//   Set R[i] = C[i]
 | |
| 	R := make([]byte, len(cipherText)-8)
 | |
| 	copy(R, cipherText[8:])
 | |
| 
 | |
| 	// 2) Compute intermediate values.
 | |
| 	for j := 5; j >= 0; j-- {
 | |
| 		for i := nblocks - 1; i >= 0; i-- {
 | |
| 			// B = AES-1(K, (A ^ t) | R[i]) where t = n*j+i
 | |
| 			// A = MSB(64, B)
 | |
| 			t := uint64(nblocks*j + i + 1)
 | |
| 			At := binary.BigEndian.Uint64(A[:8]) ^ t
 | |
| 			binary.BigEndian.PutUint64(A[:8], At)
 | |
| 
 | |
| 			copy(A[8:], R[i*8:i*8+8])
 | |
| 			cipher.Decrypt(A[:], A[:])
 | |
| 
 | |
| 			// R[i] = LSB(B, 64)
 | |
| 			copy(R[i*8:i*8+8], A[8:])
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	// 3) Output results.
 | |
| 	// If A is an appropriate initial value (see 2.2.3),
 | |
| 	for i := 0; i < 8; i++ {
 | |
| 		if A[i] != 0xA6 {
 | |
| 			return nil, errors.New("Failed to unwrap key (A is not IV)")
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return R, nil
 | |
| }
 | |
| 
 | |
| // AESKeyWrap implements RFC 3394 Key Wrapping. See
 | |
| // https://tools.ietf.org/html/rfc3394#section-2.2.2
 | |
| // Note: The second described algorithm ("index-based") is implemented
 | |
| // here.
 | |
| func AESKeyWrap(key, plainText []byte) ([]byte, error) {
 | |
| 	if len(plainText)%8 != 0 {
 | |
| 		return nil, errors.New("plainText must be a multiple of 64 bits")
 | |
| 	}
 | |
| 
 | |
| 	cipher, err := aes.NewCipher(key) // NewCipher checks key size
 | |
| 	if err != nil {
 | |
| 		return nil, err
 | |
| 	}
 | |
| 
 | |
| 	nblocks := len(plainText) / 8
 | |
| 
 | |
| 	// 1) Initialize variables.
 | |
| 	var A [aes.BlockSize]byte
 | |
| 	// Section 2.2.3.1 -- Initial Value
 | |
| 	// http://tools.ietf.org/html/rfc3394#section-2.2.3.1
 | |
| 	for i := 0; i < 8; i++ {
 | |
| 		A[i] = 0xA6
 | |
| 	}
 | |
| 
 | |
| 	// For i = 1 to n
 | |
| 	//   Set R[i] = P[i]
 | |
| 	R := make([]byte, len(plainText))
 | |
| 	copy(R, plainText)
 | |
| 
 | |
| 	// 2) Calculate intermediate values.
 | |
| 	for j := 0; j <= 5; j++ {
 | |
| 		for i := 0; i < nblocks; i++ {
 | |
| 			// B = AES(K, A | R[i])
 | |
| 			copy(A[8:], R[i*8:i*8+8])
 | |
| 			cipher.Encrypt(A[:], A[:])
 | |
| 
 | |
| 			// (Assume B = A)
 | |
| 			// A = MSB(64, B) ^ t where t = (n*j)+1
 | |
| 			t := uint64(j*nblocks + i + 1)
 | |
| 			At := binary.BigEndian.Uint64(A[:8]) ^ t
 | |
| 			binary.BigEndian.PutUint64(A[:8], At)
 | |
| 
 | |
| 			// R[i] = LSB(64, B)
 | |
| 			copy(R[i*8:i*8+8], A[8:])
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	// 3) Output results.
 | |
| 	// Set C[0] = A
 | |
| 	// For i = 1 to n
 | |
| 	//   C[i] = R[i]
 | |
| 	return append(A[:8], R...), nil
 | |
| }
 | |
| 
 | |
| // PadBuffer pads byte buffer buf to a length being multiple of
 | |
| // blockLen. Additional bytes appended to the buffer have value of the
 | |
| // number padded bytes. E.g. if the buffer is 3 bytes short of being
 | |
| // 40 bytes total, the appended bytes will be [03, 03, 03].
 | |
| func PadBuffer(buf []byte, blockLen int) []byte {
 | |
| 	padding := blockLen - (len(buf) % blockLen)
 | |
| 	if padding == 0 {
 | |
| 		return buf
 | |
| 	}
 | |
| 
 | |
| 	padBuf := make([]byte, padding)
 | |
| 	for i := 0; i < padding; i++ {
 | |
| 		padBuf[i] = byte(padding)
 | |
| 	}
 | |
| 
 | |
| 	return append(buf, padBuf...)
 | |
| }
 | |
| 
 | |
| // UnpadBuffer verifies that buffer contains proper padding and
 | |
| // returns buffer without the padding, or nil if the padding was
 | |
| // invalid.
 | |
| func UnpadBuffer(buf []byte, dataLen int) []byte {
 | |
| 	padding := len(buf) - dataLen
 | |
| 	outBuf := buf[:dataLen]
 | |
| 
 | |
| 	for i := dataLen; i < len(buf); i++ {
 | |
| 		if buf[i] != byte(padding) {
 | |
| 			// Invalid padding - bail out
 | |
| 			return nil
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return outBuf
 | |
| }
 | |
| 
 | |
| func (e *PublicKey) Encrypt(random io.Reader, kdfParams []byte, plain []byte, hash crypto.Hash, kdfKeySize int) (Vx *big.Int, Vy *big.Int, C []byte, err error) {
 | |
| 	// Vx, Vy - encryption key
 | |
| 
 | |
| 	// Note for Curve 25519 - curve25519 library already does key
 | |
| 	// clamping in scalarMult, so we can use generic random scalar
 | |
| 	// generation from elliptic.
 | |
| 	priv, Vx, Vy, err := elliptic.GenerateKey(e.Curve, random)
 | |
| 	if err != nil {
 | |
| 		return nil, nil, nil, err
 | |
| 	}
 | |
| 
 | |
| 	// Sx, Sy - shared secret
 | |
| 	Sx, _ := e.Curve.ScalarMult(e.X, e.Y, priv)
 | |
| 
 | |
| 	// Encrypt the payload with KDF-ed S as the encryption key. Pass
 | |
| 	// the ciphertext along with V to the recipient. Recipient can
 | |
| 	// generate S using V and their priv key, and then KDF(S), on
 | |
| 	// their own, to get encryption key and decrypt the ciphertext,
 | |
| 	// revealing encryption key for symmetric encryption later.
 | |
| 
 | |
| 	plain = PadBuffer(plain, 8)
 | |
| 	key := e.KDF(Sx.Bytes(), kdfParams, hash)
 | |
| 
 | |
| 	// Take only as many bytes from key as the key length (the hash
 | |
| 	// result might be bigger)
 | |
| 	encrypted, err := AESKeyWrap(key[:kdfKeySize], plain)
 | |
| 
 | |
| 	return Vx, Vy, encrypted, nil
 | |
| }
 | |
| 
 | |
| func (e *PrivateKey) DecryptShared(X, Y *big.Int) []byte {
 | |
| 	Sx, _ := e.Curve.ScalarMult(X, Y, e.X.Bytes())
 | |
| 	return Sx.Bytes()
 | |
| }
 | |
| 
 | |
| func countBits(buffer []byte) int {
 | |
| 	var headerLen int
 | |
| 	switch buffer[0] {
 | |
| 	case 0x4:
 | |
| 		headerLen = 3
 | |
| 	case 0x40:
 | |
| 		headerLen = 7
 | |
| 	default:
 | |
| 		// Unexpected header - but we can still count the bits.
 | |
| 		val := buffer[0]
 | |
| 		headerLen = 0
 | |
| 		for val > 0 {
 | |
| 			val = val / 2
 | |
| 			headerLen++
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return headerLen + (len(buffer)-1)*8
 | |
| }
 | |
| 
 | |
| // elliptic.Marshal and elliptic.Unmarshal only marshals uncompressed
 | |
| // 0x4 MPI types. These functions will check if the curve is cv25519,
 | |
| // and if so, use 0x40 compressed type to (un)marshal. Otherwise,
 | |
| // elliptic.(Un)marshal will be called.
 | |
| 
 | |
| // Marshal encodes point into either 0x4 uncompressed point form, or
 | |
| // 0x40 compressed point for Curve 25519.
 | |
| func Marshal(curve elliptic.Curve, x, y *big.Int) (buf []byte, bitSize int) {
 | |
| 	// NOTE: Read more about MPI encoding in the RFC:
 | |
| 	// https://tools.ietf.org/html/rfc4880#section-3.2
 | |
| 
 | |
| 	// We are required to encode size in bits, counting from the most-
 | |
| 	// significant non-zero bit. So assuming that the buffer never
 | |
| 	// starts with 0x00, we only need to count bits in the first byte
 | |
| 	// - and in current implentation it will always be 0x4 or 0x40.
 | |
| 
 | |
| 	cv, ok := curve25519.ToCurve25519(curve)
 | |
| 	if ok {
 | |
| 		buf = cv.MarshalType40(x, y)
 | |
| 	} else {
 | |
| 		buf = elliptic.Marshal(curve, x, y)
 | |
| 	}
 | |
| 
 | |
| 	return buf, countBits(buf)
 | |
| }
 | |
| 
 | |
| // Unmarshal converts point, serialized by Marshal, into x, y pair.
 | |
| // For 0x40 compressed points (for Curve 25519), y will always be 0.
 | |
| // It is an error if point is not on the curve, On error, x = nil.
 | |
| func Unmarshal(curve elliptic.Curve, data []byte) (x, y *big.Int) {
 | |
| 	cv, ok := curve25519.ToCurve25519(curve)
 | |
| 	if ok {
 | |
| 		return cv.UnmarshalType40(data)
 | |
| 	}
 | |
| 
 | |
| 	return elliptic.Unmarshal(curve, data)
 | |
| }
 | |
| 
 | |
| func GenerateKey(curve elliptic.Curve, random io.Reader) (priv *PrivateKey, err error) {
 | |
| 	var privBytes []byte
 | |
| 	var Vx, Vy *big.Int
 | |
| 
 | |
| 	if _, ok := curve25519.ToCurve25519(curve); ok {
 | |
| 		privBytes = make([]byte, 32)
 | |
| 		_, err = io.ReadFull(random, privBytes)
 | |
| 		if err != nil {
 | |
| 			return nil, err
 | |
| 		}
 | |
| 
 | |
| 		// NOTE: PGP expect scalars in reverse order than Curve 25519
 | |
| 		// go library. That's why this trimming is backwards compared
 | |
| 		// to curve25519.go
 | |
| 		privBytes[31] &= 248
 | |
| 		privBytes[0] &= 127
 | |
| 		privBytes[0] |= 64
 | |
| 
 | |
| 		Vx,Vy = curve.ScalarBaseMult(privBytes)
 | |
| 	} else {
 | |
| 		privBytes, Vx, Vy, err = elliptic.GenerateKey(curve, random)
 | |
| 		if err != nil {
 | |
| 			return nil, err
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	priv = &PrivateKey{}
 | |
| 	priv.X = new(big.Int).SetBytes(privBytes)
 | |
| 	priv.PublicKey.Curve = curve
 | |
| 	priv.PublicKey.X = Vx
 | |
| 	priv.PublicKey.Y = Vy
 | |
| 	return priv, nil
 | |
| }
 |