mirror of
				https://github.com/go-gitea/gitea.git
				synced 2025-10-29 10:57:44 +09:00 
			
		
		
		
	
		
			
				
	
	
		
			1023 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			1023 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
| // Copyright (c) 2015 Klaus Post, released under MIT License. See LICENSE file.
 | ||
| 
 | ||
| // Package cpuid provides information about the CPU running the current program.
 | ||
| //
 | ||
| // CPU features are detected on startup, and kept for fast access through the life of the application.
 | ||
| // Currently x86 / x64 (AMD64) is supported.
 | ||
| //
 | ||
| // You can access the CPU information by accessing the shared CPU variable of the cpuid library.
 | ||
| //
 | ||
| // Package home: https://github.com/klauspost/cpuid
 | ||
| package cpuid
 | ||
| 
 | ||
| import "strings"
 | ||
| 
 | ||
| // Vendor is a representation of a CPU vendor.
 | ||
| type Vendor int
 | ||
| 
 | ||
| const (
 | ||
| 	Other Vendor = iota
 | ||
| 	Intel
 | ||
| 	AMD
 | ||
| 	VIA
 | ||
| 	Transmeta
 | ||
| 	NSC
 | ||
| 	KVM  // Kernel-based Virtual Machine
 | ||
| 	MSVM // Microsoft Hyper-V or Windows Virtual PC
 | ||
| 	VMware
 | ||
| 	XenHVM
 | ||
| )
 | ||
| 
 | ||
| const (
 | ||
| 	CMOV        = 1 << iota // i686 CMOV
 | ||
| 	NX                      // NX (No-Execute) bit
 | ||
| 	AMD3DNOW                // AMD 3DNOW
 | ||
| 	AMD3DNOWEXT             // AMD 3DNowExt
 | ||
| 	MMX                     // standard MMX
 | ||
| 	MMXEXT                  // SSE integer functions or AMD MMX ext
 | ||
| 	SSE                     // SSE functions
 | ||
| 	SSE2                    // P4 SSE functions
 | ||
| 	SSE3                    // Prescott SSE3 functions
 | ||
| 	SSSE3                   // Conroe SSSE3 functions
 | ||
| 	SSE4                    // Penryn SSE4.1 functions
 | ||
| 	SSE4A                   // AMD Barcelona microarchitecture SSE4a instructions
 | ||
| 	SSE42                   // Nehalem SSE4.2 functions
 | ||
| 	AVX                     // AVX functions
 | ||
| 	AVX2                    // AVX2 functions
 | ||
| 	FMA3                    // Intel FMA 3
 | ||
| 	FMA4                    // Bulldozer FMA4 functions
 | ||
| 	XOP                     // Bulldozer XOP functions
 | ||
| 	F16C                    // Half-precision floating-point conversion
 | ||
| 	BMI1                    // Bit Manipulation Instruction Set 1
 | ||
| 	BMI2                    // Bit Manipulation Instruction Set 2
 | ||
| 	TBM                     // AMD Trailing Bit Manipulation
 | ||
| 	LZCNT                   // LZCNT instruction
 | ||
| 	POPCNT                  // POPCNT instruction
 | ||
| 	AESNI                   // Advanced Encryption Standard New Instructions
 | ||
| 	CLMUL                   // Carry-less Multiplication
 | ||
| 	HTT                     // Hyperthreading (enabled)
 | ||
| 	HLE                     // Hardware Lock Elision
 | ||
| 	RTM                     // Restricted Transactional Memory
 | ||
| 	RDRAND                  // RDRAND instruction is available
 | ||
| 	RDSEED                  // RDSEED instruction is available
 | ||
| 	ADX                     // Intel ADX (Multi-Precision Add-Carry Instruction Extensions)
 | ||
| 	SHA                     // Intel SHA Extensions
 | ||
| 	AVX512F                 // AVX-512 Foundation
 | ||
| 	AVX512DQ                // AVX-512 Doubleword and Quadword Instructions
 | ||
| 	AVX512IFMA              // AVX-512 Integer Fused Multiply-Add Instructions
 | ||
| 	AVX512PF                // AVX-512 Prefetch Instructions
 | ||
| 	AVX512ER                // AVX-512 Exponential and Reciprocal Instructions
 | ||
| 	AVX512CD                // AVX-512 Conflict Detection Instructions
 | ||
| 	AVX512BW                // AVX-512 Byte and Word Instructions
 | ||
| 	AVX512VL                // AVX-512 Vector Length Extensions
 | ||
| 	AVX512VBMI              // AVX-512 Vector Bit Manipulation Instructions
 | ||
| 	MPX                     // Intel MPX (Memory Protection Extensions)
 | ||
| 	ERMS                    // Enhanced REP MOVSB/STOSB
 | ||
| 	RDTSCP                  // RDTSCP Instruction
 | ||
| 	CX16                    // CMPXCHG16B Instruction
 | ||
| 	SGX                     // Software Guard Extensions
 | ||
| 
 | ||
| 	// Performance indicators
 | ||
| 	SSE2SLOW // SSE2 is supported, but usually not faster
 | ||
| 	SSE3SLOW // SSE3 is supported, but usually not faster
 | ||
| 	ATOM     // Atom processor, some SSSE3 instructions are slower
 | ||
| )
 | ||
| 
 | ||
| var flagNames = map[Flags]string{
 | ||
| 	CMOV:        "CMOV",        // i686 CMOV
 | ||
| 	NX:          "NX",          // NX (No-Execute) bit
 | ||
| 	AMD3DNOW:    "AMD3DNOW",    // AMD 3DNOW
 | ||
| 	AMD3DNOWEXT: "AMD3DNOWEXT", // AMD 3DNowExt
 | ||
| 	MMX:         "MMX",         // Standard MMX
 | ||
| 	MMXEXT:      "MMXEXT",      // SSE integer functions or AMD MMX ext
 | ||
| 	SSE:         "SSE",         // SSE functions
 | ||
| 	SSE2:        "SSE2",        // P4 SSE2 functions
 | ||
| 	SSE3:        "SSE3",        // Prescott SSE3 functions
 | ||
| 	SSSE3:       "SSSE3",       // Conroe SSSE3 functions
 | ||
| 	SSE4:        "SSE4.1",      // Penryn SSE4.1 functions
 | ||
| 	SSE4A:       "SSE4A",       // AMD Barcelona microarchitecture SSE4a instructions
 | ||
| 	SSE42:       "SSE4.2",      // Nehalem SSE4.2 functions
 | ||
| 	AVX:         "AVX",         // AVX functions
 | ||
| 	AVX2:        "AVX2",        // AVX functions
 | ||
| 	FMA3:        "FMA3",        // Intel FMA 3
 | ||
| 	FMA4:        "FMA4",        // Bulldozer FMA4 functions
 | ||
| 	XOP:         "XOP",         // Bulldozer XOP functions
 | ||
| 	F16C:        "F16C",        // Half-precision floating-point conversion
 | ||
| 	BMI1:        "BMI1",        // Bit Manipulation Instruction Set 1
 | ||
| 	BMI2:        "BMI2",        // Bit Manipulation Instruction Set 2
 | ||
| 	TBM:         "TBM",         // AMD Trailing Bit Manipulation
 | ||
| 	LZCNT:       "LZCNT",       // LZCNT instruction
 | ||
| 	POPCNT:      "POPCNT",      // POPCNT instruction
 | ||
| 	AESNI:       "AESNI",       // Advanced Encryption Standard New Instructions
 | ||
| 	CLMUL:       "CLMUL",       // Carry-less Multiplication
 | ||
| 	HTT:         "HTT",         // Hyperthreading (enabled)
 | ||
| 	HLE:         "HLE",         // Hardware Lock Elision
 | ||
| 	RTM:         "RTM",         // Restricted Transactional Memory
 | ||
| 	RDRAND:      "RDRAND",      // RDRAND instruction is available
 | ||
| 	RDSEED:      "RDSEED",      // RDSEED instruction is available
 | ||
| 	ADX:         "ADX",         // Intel ADX (Multi-Precision Add-Carry Instruction Extensions)
 | ||
| 	SHA:         "SHA",         // Intel SHA Extensions
 | ||
| 	AVX512F:     "AVX512F",     // AVX-512 Foundation
 | ||
| 	AVX512DQ:    "AVX512DQ",    // AVX-512 Doubleword and Quadword Instructions
 | ||
| 	AVX512IFMA:  "AVX512IFMA",  // AVX-512 Integer Fused Multiply-Add Instructions
 | ||
| 	AVX512PF:    "AVX512PF",    // AVX-512 Prefetch Instructions
 | ||
| 	AVX512ER:    "AVX512ER",    // AVX-512 Exponential and Reciprocal Instructions
 | ||
| 	AVX512CD:    "AVX512CD",    // AVX-512 Conflict Detection Instructions
 | ||
| 	AVX512BW:    "AVX512BW",    // AVX-512 Byte and Word Instructions
 | ||
| 	AVX512VL:    "AVX512VL",    // AVX-512 Vector Length Extensions
 | ||
| 	AVX512VBMI:  "AVX512VBMI",  // AVX-512 Vector Bit Manipulation Instructions
 | ||
| 	MPX:         "MPX",         // Intel MPX (Memory Protection Extensions)
 | ||
| 	ERMS:        "ERMS",        // Enhanced REP MOVSB/STOSB
 | ||
| 	RDTSCP:      "RDTSCP",      // RDTSCP Instruction
 | ||
| 	CX16:        "CX16",        // CMPXCHG16B Instruction
 | ||
| 	SGX:         "SGX",         // Software Guard Extensions
 | ||
| 
 | ||
| 	// Performance indicators
 | ||
| 	SSE2SLOW: "SSE2SLOW", // SSE2 supported, but usually not faster
 | ||
| 	SSE3SLOW: "SSE3SLOW", // SSE3 supported, but usually not faster
 | ||
| 	ATOM:     "ATOM",     // Atom processor, some SSSE3 instructions are slower
 | ||
| 
 | ||
| }
 | ||
| 
 | ||
| // CPUInfo contains information about the detected system CPU.
 | ||
| type CPUInfo struct {
 | ||
| 	BrandName      string // Brand name reported by the CPU
 | ||
| 	VendorID       Vendor // Comparable CPU vendor ID
 | ||
| 	Features       Flags  // Features of the CPU
 | ||
| 	PhysicalCores  int    // Number of physical processor cores in your CPU. Will be 0 if undetectable.
 | ||
| 	ThreadsPerCore int    // Number of threads per physical core. Will be 1 if undetectable.
 | ||
| 	LogicalCores   int    // Number of physical cores times threads that can run on each core through the use of hyperthreading. Will be 0 if undetectable.
 | ||
| 	Family         int    // CPU family number
 | ||
| 	Model          int    // CPU model number
 | ||
| 	CacheLine      int    // Cache line size in bytes. Will be 0 if undetectable.
 | ||
| 	Cache          struct {
 | ||
| 		L1I int // L1 Instruction Cache (per core or shared). Will be -1 if undetected
 | ||
| 		L1D int // L1 Data Cache (per core or shared). Will be -1 if undetected
 | ||
| 		L2  int // L2 Cache (per core or shared). Will be -1 if undetected
 | ||
| 		L3  int // L3 Instruction Cache (per core or shared). Will be -1 if undetected
 | ||
| 	}
 | ||
| 	SGX       SGXSupport
 | ||
| 	maxFunc   uint32
 | ||
| 	maxExFunc uint32
 | ||
| }
 | ||
| 
 | ||
| var cpuid func(op uint32) (eax, ebx, ecx, edx uint32)
 | ||
| var cpuidex func(op, op2 uint32) (eax, ebx, ecx, edx uint32)
 | ||
| var xgetbv func(index uint32) (eax, edx uint32)
 | ||
| var rdtscpAsm func() (eax, ebx, ecx, edx uint32)
 | ||
| 
 | ||
| // CPU contains information about the CPU as detected on startup,
 | ||
| // or when Detect last was called.
 | ||
| //
 | ||
| // Use this as the primary entry point to you data,
 | ||
| // this way queries are
 | ||
| var CPU CPUInfo
 | ||
| 
 | ||
| func init() {
 | ||
| 	initCPU()
 | ||
| 	Detect()
 | ||
| }
 | ||
| 
 | ||
| // Detect will re-detect current CPU info.
 | ||
| // This will replace the content of the exported CPU variable.
 | ||
| //
 | ||
| // Unless you expect the CPU to change while you are running your program
 | ||
| // you should not need to call this function.
 | ||
| // If you call this, you must ensure that no other goroutine is accessing the
 | ||
| // exported CPU variable.
 | ||
| func Detect() {
 | ||
| 	CPU.maxFunc = maxFunctionID()
 | ||
| 	CPU.maxExFunc = maxExtendedFunction()
 | ||
| 	CPU.BrandName = brandName()
 | ||
| 	CPU.CacheLine = cacheLine()
 | ||
| 	CPU.Family, CPU.Model = familyModel()
 | ||
| 	CPU.Features = support()
 | ||
| 	CPU.SGX = sgx(CPU.Features&SGX != 0)
 | ||
| 	CPU.ThreadsPerCore = threadsPerCore()
 | ||
| 	CPU.LogicalCores = logicalCores()
 | ||
| 	CPU.PhysicalCores = physicalCores()
 | ||
| 	CPU.VendorID = vendorID()
 | ||
| 	CPU.cacheSize()
 | ||
| }
 | ||
| 
 | ||
| // Generated here: http://play.golang.org/p/BxFH2Gdc0G
 | ||
| 
 | ||
| // Cmov indicates support of CMOV instructions
 | ||
| func (c CPUInfo) Cmov() bool {
 | ||
| 	return c.Features&CMOV != 0
 | ||
| }
 | ||
| 
 | ||
| // Amd3dnow indicates support of AMD 3DNOW! instructions
 | ||
| func (c CPUInfo) Amd3dnow() bool {
 | ||
| 	return c.Features&AMD3DNOW != 0
 | ||
| }
 | ||
| 
 | ||
| // Amd3dnowExt indicates support of AMD 3DNOW! Extended instructions
 | ||
| func (c CPUInfo) Amd3dnowExt() bool {
 | ||
| 	return c.Features&AMD3DNOWEXT != 0
 | ||
| }
 | ||
| 
 | ||
| // MMX indicates support of MMX instructions
 | ||
| func (c CPUInfo) MMX() bool {
 | ||
| 	return c.Features&MMX != 0
 | ||
| }
 | ||
| 
 | ||
| // MMXExt indicates support of MMXEXT instructions
 | ||
| // (SSE integer functions or AMD MMX ext)
 | ||
| func (c CPUInfo) MMXExt() bool {
 | ||
| 	return c.Features&MMXEXT != 0
 | ||
| }
 | ||
| 
 | ||
| // SSE indicates support of SSE instructions
 | ||
| func (c CPUInfo) SSE() bool {
 | ||
| 	return c.Features&SSE != 0
 | ||
| }
 | ||
| 
 | ||
| // SSE2 indicates support of SSE 2 instructions
 | ||
| func (c CPUInfo) SSE2() bool {
 | ||
| 	return c.Features&SSE2 != 0
 | ||
| }
 | ||
| 
 | ||
| // SSE3 indicates support of SSE 3 instructions
 | ||
| func (c CPUInfo) SSE3() bool {
 | ||
| 	return c.Features&SSE3 != 0
 | ||
| }
 | ||
| 
 | ||
| // SSSE3 indicates support of SSSE 3 instructions
 | ||
| func (c CPUInfo) SSSE3() bool {
 | ||
| 	return c.Features&SSSE3 != 0
 | ||
| }
 | ||
| 
 | ||
| // SSE4 indicates support of SSE 4 (also called SSE 4.1) instructions
 | ||
| func (c CPUInfo) SSE4() bool {
 | ||
| 	return c.Features&SSE4 != 0
 | ||
| }
 | ||
| 
 | ||
| // SSE42 indicates support of SSE4.2 instructions
 | ||
| func (c CPUInfo) SSE42() bool {
 | ||
| 	return c.Features&SSE42 != 0
 | ||
| }
 | ||
| 
 | ||
| // AVX indicates support of AVX instructions
 | ||
| // and operating system support of AVX instructions
 | ||
| func (c CPUInfo) AVX() bool {
 | ||
| 	return c.Features&AVX != 0
 | ||
| }
 | ||
| 
 | ||
| // AVX2 indicates support of AVX2 instructions
 | ||
| func (c CPUInfo) AVX2() bool {
 | ||
| 	return c.Features&AVX2 != 0
 | ||
| }
 | ||
| 
 | ||
| // FMA3 indicates support of FMA3 instructions
 | ||
| func (c CPUInfo) FMA3() bool {
 | ||
| 	return c.Features&FMA3 != 0
 | ||
| }
 | ||
| 
 | ||
| // FMA4 indicates support of FMA4 instructions
 | ||
| func (c CPUInfo) FMA4() bool {
 | ||
| 	return c.Features&FMA4 != 0
 | ||
| }
 | ||
| 
 | ||
| // XOP indicates support of XOP instructions
 | ||
| func (c CPUInfo) XOP() bool {
 | ||
| 	return c.Features&XOP != 0
 | ||
| }
 | ||
| 
 | ||
| // F16C indicates support of F16C instructions
 | ||
| func (c CPUInfo) F16C() bool {
 | ||
| 	return c.Features&F16C != 0
 | ||
| }
 | ||
| 
 | ||
| // BMI1 indicates support of BMI1 instructions
 | ||
| func (c CPUInfo) BMI1() bool {
 | ||
| 	return c.Features&BMI1 != 0
 | ||
| }
 | ||
| 
 | ||
| // BMI2 indicates support of BMI2 instructions
 | ||
| func (c CPUInfo) BMI2() bool {
 | ||
| 	return c.Features&BMI2 != 0
 | ||
| }
 | ||
| 
 | ||
| // TBM indicates support of TBM instructions
 | ||
| // (AMD Trailing Bit Manipulation)
 | ||
| func (c CPUInfo) TBM() bool {
 | ||
| 	return c.Features&TBM != 0
 | ||
| }
 | ||
| 
 | ||
| // Lzcnt indicates support of LZCNT instruction
 | ||
| func (c CPUInfo) Lzcnt() bool {
 | ||
| 	return c.Features&LZCNT != 0
 | ||
| }
 | ||
| 
 | ||
| // Popcnt indicates support of POPCNT instruction
 | ||
| func (c CPUInfo) Popcnt() bool {
 | ||
| 	return c.Features&POPCNT != 0
 | ||
| }
 | ||
| 
 | ||
| // HTT indicates the processor has Hyperthreading enabled
 | ||
| func (c CPUInfo) HTT() bool {
 | ||
| 	return c.Features&HTT != 0
 | ||
| }
 | ||
| 
 | ||
| // SSE2Slow indicates that SSE2 may be slow on this processor
 | ||
| func (c CPUInfo) SSE2Slow() bool {
 | ||
| 	return c.Features&SSE2SLOW != 0
 | ||
| }
 | ||
| 
 | ||
| // SSE3Slow indicates that SSE3 may be slow on this processor
 | ||
| func (c CPUInfo) SSE3Slow() bool {
 | ||
| 	return c.Features&SSE3SLOW != 0
 | ||
| }
 | ||
| 
 | ||
| // AesNi indicates support of AES-NI instructions
 | ||
| // (Advanced Encryption Standard New Instructions)
 | ||
| func (c CPUInfo) AesNi() bool {
 | ||
| 	return c.Features&AESNI != 0
 | ||
| }
 | ||
| 
 | ||
| // Clmul indicates support of CLMUL instructions
 | ||
| // (Carry-less Multiplication)
 | ||
| func (c CPUInfo) Clmul() bool {
 | ||
| 	return c.Features&CLMUL != 0
 | ||
| }
 | ||
| 
 | ||
| // NX indicates support of NX (No-Execute) bit
 | ||
| func (c CPUInfo) NX() bool {
 | ||
| 	return c.Features&NX != 0
 | ||
| }
 | ||
| 
 | ||
| // SSE4A indicates support of AMD Barcelona microarchitecture SSE4a instructions
 | ||
| func (c CPUInfo) SSE4A() bool {
 | ||
| 	return c.Features&SSE4A != 0
 | ||
| }
 | ||
| 
 | ||
| // HLE indicates support of Hardware Lock Elision
 | ||
| func (c CPUInfo) HLE() bool {
 | ||
| 	return c.Features&HLE != 0
 | ||
| }
 | ||
| 
 | ||
| // RTM indicates support of Restricted Transactional Memory
 | ||
| func (c CPUInfo) RTM() bool {
 | ||
| 	return c.Features&RTM != 0
 | ||
| }
 | ||
| 
 | ||
| // Rdrand indicates support of RDRAND instruction is available
 | ||
| func (c CPUInfo) Rdrand() bool {
 | ||
| 	return c.Features&RDRAND != 0
 | ||
| }
 | ||
| 
 | ||
| // Rdseed indicates support of RDSEED instruction is available
 | ||
| func (c CPUInfo) Rdseed() bool {
 | ||
| 	return c.Features&RDSEED != 0
 | ||
| }
 | ||
| 
 | ||
| // ADX indicates support of Intel ADX (Multi-Precision Add-Carry Instruction Extensions)
 | ||
| func (c CPUInfo) ADX() bool {
 | ||
| 	return c.Features&ADX != 0
 | ||
| }
 | ||
| 
 | ||
| // SHA indicates support of Intel SHA Extensions
 | ||
| func (c CPUInfo) SHA() bool {
 | ||
| 	return c.Features&SHA != 0
 | ||
| }
 | ||
| 
 | ||
| // AVX512F indicates support of AVX-512 Foundation
 | ||
| func (c CPUInfo) AVX512F() bool {
 | ||
| 	return c.Features&AVX512F != 0
 | ||
| }
 | ||
| 
 | ||
| // AVX512DQ indicates support of AVX-512 Doubleword and Quadword Instructions
 | ||
| func (c CPUInfo) AVX512DQ() bool {
 | ||
| 	return c.Features&AVX512DQ != 0
 | ||
| }
 | ||
| 
 | ||
| // AVX512IFMA indicates support of AVX-512 Integer Fused Multiply-Add Instructions
 | ||
| func (c CPUInfo) AVX512IFMA() bool {
 | ||
| 	return c.Features&AVX512IFMA != 0
 | ||
| }
 | ||
| 
 | ||
| // AVX512PF indicates support of AVX-512 Prefetch Instructions
 | ||
| func (c CPUInfo) AVX512PF() bool {
 | ||
| 	return c.Features&AVX512PF != 0
 | ||
| }
 | ||
| 
 | ||
| // AVX512ER indicates support of AVX-512 Exponential and Reciprocal Instructions
 | ||
| func (c CPUInfo) AVX512ER() bool {
 | ||
| 	return c.Features&AVX512ER != 0
 | ||
| }
 | ||
| 
 | ||
| // AVX512CD indicates support of AVX-512 Conflict Detection Instructions
 | ||
| func (c CPUInfo) AVX512CD() bool {
 | ||
| 	return c.Features&AVX512CD != 0
 | ||
| }
 | ||
| 
 | ||
| // AVX512BW indicates support of AVX-512 Byte and Word Instructions
 | ||
| func (c CPUInfo) AVX512BW() bool {
 | ||
| 	return c.Features&AVX512BW != 0
 | ||
| }
 | ||
| 
 | ||
| // AVX512VL indicates support of AVX-512 Vector Length Extensions
 | ||
| func (c CPUInfo) AVX512VL() bool {
 | ||
| 	return c.Features&AVX512VL != 0
 | ||
| }
 | ||
| 
 | ||
| // AVX512VBMI indicates support of AVX-512 Vector Bit Manipulation Instructions
 | ||
| func (c CPUInfo) AVX512VBMI() bool {
 | ||
| 	return c.Features&AVX512VBMI != 0
 | ||
| }
 | ||
| 
 | ||
| // MPX indicates support of Intel MPX (Memory Protection Extensions)
 | ||
| func (c CPUInfo) MPX() bool {
 | ||
| 	return c.Features&MPX != 0
 | ||
| }
 | ||
| 
 | ||
| // ERMS indicates support of Enhanced REP MOVSB/STOSB
 | ||
| func (c CPUInfo) ERMS() bool {
 | ||
| 	return c.Features&ERMS != 0
 | ||
| }
 | ||
| 
 | ||
| func (c CPUInfo) RDTSCP() bool {
 | ||
| 	return c.Features&RDTSCP != 0
 | ||
| }
 | ||
| 
 | ||
| func (c CPUInfo) CX16() bool {
 | ||
| 	return c.Features&CX16 != 0
 | ||
| }
 | ||
| 
 | ||
| // Atom indicates an Atom processor
 | ||
| func (c CPUInfo) Atom() bool {
 | ||
| 	return c.Features&ATOM != 0
 | ||
| }
 | ||
| 
 | ||
| // Intel returns true if vendor is recognized as Intel
 | ||
| func (c CPUInfo) Intel() bool {
 | ||
| 	return c.VendorID == Intel
 | ||
| }
 | ||
| 
 | ||
| // AMD returns true if vendor is recognized as AMD
 | ||
| func (c CPUInfo) AMD() bool {
 | ||
| 	return c.VendorID == AMD
 | ||
| }
 | ||
| 
 | ||
| // Transmeta returns true if vendor is recognized as Transmeta
 | ||
| func (c CPUInfo) Transmeta() bool {
 | ||
| 	return c.VendorID == Transmeta
 | ||
| }
 | ||
| 
 | ||
| // NSC returns true if vendor is recognized as National Semiconductor
 | ||
| func (c CPUInfo) NSC() bool {
 | ||
| 	return c.VendorID == NSC
 | ||
| }
 | ||
| 
 | ||
| // VIA returns true if vendor is recognized as VIA
 | ||
| func (c CPUInfo) VIA() bool {
 | ||
| 	return c.VendorID == VIA
 | ||
| }
 | ||
| 
 | ||
| // RTCounter returns the 64-bit time-stamp counter
 | ||
| // Uses the RDTSCP instruction. The value 0 is returned
 | ||
| // if the CPU does not support the instruction.
 | ||
| func (c CPUInfo) RTCounter() uint64 {
 | ||
| 	if !c.RDTSCP() {
 | ||
| 		return 0
 | ||
| 	}
 | ||
| 	a, _, _, d := rdtscpAsm()
 | ||
| 	return uint64(a) | (uint64(d) << 32)
 | ||
| }
 | ||
| 
 | ||
| // Ia32TscAux returns the IA32_TSC_AUX part of the RDTSCP.
 | ||
| // This variable is OS dependent, but on Linux contains information
 | ||
| // about the current cpu/core the code is running on.
 | ||
| // If the RDTSCP instruction isn't supported on the CPU, the value 0 is returned.
 | ||
| func (c CPUInfo) Ia32TscAux() uint32 {
 | ||
| 	if !c.RDTSCP() {
 | ||
| 		return 0
 | ||
| 	}
 | ||
| 	_, _, ecx, _ := rdtscpAsm()
 | ||
| 	return ecx
 | ||
| }
 | ||
| 
 | ||
| // LogicalCPU will return the Logical CPU the code is currently executing on.
 | ||
| // This is likely to change when the OS re-schedules the running thread
 | ||
| // to another CPU.
 | ||
| // If the current core cannot be detected, -1 will be returned.
 | ||
| func (c CPUInfo) LogicalCPU() int {
 | ||
| 	if c.maxFunc < 1 {
 | ||
| 		return -1
 | ||
| 	}
 | ||
| 	_, ebx, _, _ := cpuid(1)
 | ||
| 	return int(ebx >> 24)
 | ||
| }
 | ||
| 
 | ||
| // VM Will return true if the cpu id indicates we are in
 | ||
| // a virtual machine. This is only a hint, and will very likely
 | ||
| // have many false negatives.
 | ||
| func (c CPUInfo) VM() bool {
 | ||
| 	switch c.VendorID {
 | ||
| 	case MSVM, KVM, VMware, XenHVM:
 | ||
| 		return true
 | ||
| 	}
 | ||
| 	return false
 | ||
| }
 | ||
| 
 | ||
| // Flags contains detected cpu features and caracteristics
 | ||
| type Flags uint64
 | ||
| 
 | ||
| // String returns a string representation of the detected
 | ||
| // CPU features.
 | ||
| func (f Flags) String() string {
 | ||
| 	return strings.Join(f.Strings(), ",")
 | ||
| }
 | ||
| 
 | ||
| // Strings returns and array of the detected features.
 | ||
| func (f Flags) Strings() []string {
 | ||
| 	s := support()
 | ||
| 	r := make([]string, 0, 20)
 | ||
| 	for i := uint(0); i < 64; i++ {
 | ||
| 		key := Flags(1 << i)
 | ||
| 		val := flagNames[key]
 | ||
| 		if s&key != 0 {
 | ||
| 			r = append(r, val)
 | ||
| 		}
 | ||
| 	}
 | ||
| 	return r
 | ||
| }
 | ||
| 
 | ||
| func maxExtendedFunction() uint32 {
 | ||
| 	eax, _, _, _ := cpuid(0x80000000)
 | ||
| 	return eax
 | ||
| }
 | ||
| 
 | ||
| func maxFunctionID() uint32 {
 | ||
| 	a, _, _, _ := cpuid(0)
 | ||
| 	return a
 | ||
| }
 | ||
| 
 | ||
| func brandName() string {
 | ||
| 	if maxExtendedFunction() >= 0x80000004 {
 | ||
| 		v := make([]uint32, 0, 48)
 | ||
| 		for i := uint32(0); i < 3; i++ {
 | ||
| 			a, b, c, d := cpuid(0x80000002 + i)
 | ||
| 			v = append(v, a, b, c, d)
 | ||
| 		}
 | ||
| 		return strings.Trim(string(valAsString(v...)), " ")
 | ||
| 	}
 | ||
| 	return "unknown"
 | ||
| }
 | ||
| 
 | ||
| func threadsPerCore() int {
 | ||
| 	mfi := maxFunctionID()
 | ||
| 	if mfi < 0x4 || vendorID() != Intel {
 | ||
| 		return 1
 | ||
| 	}
 | ||
| 
 | ||
| 	if mfi < 0xb {
 | ||
| 		_, b, _, d := cpuid(1)
 | ||
| 		if (d & (1 << 28)) != 0 {
 | ||
| 			// v will contain logical core count
 | ||
| 			v := (b >> 16) & 255
 | ||
| 			if v > 1 {
 | ||
| 				a4, _, _, _ := cpuid(4)
 | ||
| 				// physical cores
 | ||
| 				v2 := (a4 >> 26) + 1
 | ||
| 				if v2 > 0 {
 | ||
| 					return int(v) / int(v2)
 | ||
| 				}
 | ||
| 			}
 | ||
| 		}
 | ||
| 		return 1
 | ||
| 	}
 | ||
| 	_, b, _, _ := cpuidex(0xb, 0)
 | ||
| 	if b&0xffff == 0 {
 | ||
| 		return 1
 | ||
| 	}
 | ||
| 	return int(b & 0xffff)
 | ||
| }
 | ||
| 
 | ||
| func logicalCores() int {
 | ||
| 	mfi := maxFunctionID()
 | ||
| 	switch vendorID() {
 | ||
| 	case Intel:
 | ||
| 		// Use this on old Intel processors
 | ||
| 		if mfi < 0xb {
 | ||
| 			if mfi < 1 {
 | ||
| 				return 0
 | ||
| 			}
 | ||
| 			// CPUID.1:EBX[23:16] represents the maximum number of addressable IDs (initial APIC ID)
 | ||
| 			// that can be assigned to logical processors in a physical package.
 | ||
| 			// The value may not be the same as the number of logical processors that are present in the hardware of a physical package.
 | ||
| 			_, ebx, _, _ := cpuid(1)
 | ||
| 			logical := (ebx >> 16) & 0xff
 | ||
| 			return int(logical)
 | ||
| 		}
 | ||
| 		_, b, _, _ := cpuidex(0xb, 1)
 | ||
| 		return int(b & 0xffff)
 | ||
| 	case AMD:
 | ||
| 		_, b, _, _ := cpuid(1)
 | ||
| 		return int((b >> 16) & 0xff)
 | ||
| 	default:
 | ||
| 		return 0
 | ||
| 	}
 | ||
| }
 | ||
| 
 | ||
| func familyModel() (int, int) {
 | ||
| 	if maxFunctionID() < 0x1 {
 | ||
| 		return 0, 0
 | ||
| 	}
 | ||
| 	eax, _, _, _ := cpuid(1)
 | ||
| 	family := ((eax >> 8) & 0xf) + ((eax >> 20) & 0xff)
 | ||
| 	model := ((eax >> 4) & 0xf) + ((eax >> 12) & 0xf0)
 | ||
| 	return int(family), int(model)
 | ||
| }
 | ||
| 
 | ||
| func physicalCores() int {
 | ||
| 	switch vendorID() {
 | ||
| 	case Intel:
 | ||
| 		return logicalCores() / threadsPerCore()
 | ||
| 	case AMD:
 | ||
| 		if maxExtendedFunction() >= 0x80000008 {
 | ||
| 			_, _, c, _ := cpuid(0x80000008)
 | ||
| 			return int(c&0xff) + 1
 | ||
| 		}
 | ||
| 	}
 | ||
| 	return 0
 | ||
| }
 | ||
| 
 | ||
| // Except from http://en.wikipedia.org/wiki/CPUID#EAX.3D0:_Get_vendor_ID
 | ||
| var vendorMapping = map[string]Vendor{
 | ||
| 	"AMDisbetter!": AMD,
 | ||
| 	"AuthenticAMD": AMD,
 | ||
| 	"CentaurHauls": VIA,
 | ||
| 	"GenuineIntel": Intel,
 | ||
| 	"TransmetaCPU": Transmeta,
 | ||
| 	"GenuineTMx86": Transmeta,
 | ||
| 	"Geode by NSC": NSC,
 | ||
| 	"VIA VIA VIA ": VIA,
 | ||
| 	"KVMKVMKVMKVM": KVM,
 | ||
| 	"Microsoft Hv": MSVM,
 | ||
| 	"VMwareVMware": VMware,
 | ||
| 	"XenVMMXenVMM": XenHVM,
 | ||
| }
 | ||
| 
 | ||
| func vendorID() Vendor {
 | ||
| 	_, b, c, d := cpuid(0)
 | ||
| 	v := valAsString(b, d, c)
 | ||
| 	vend, ok := vendorMapping[string(v)]
 | ||
| 	if !ok {
 | ||
| 		return Other
 | ||
| 	}
 | ||
| 	return vend
 | ||
| }
 | ||
| 
 | ||
| func cacheLine() int {
 | ||
| 	if maxFunctionID() < 0x1 {
 | ||
| 		return 0
 | ||
| 	}
 | ||
| 
 | ||
| 	_, ebx, _, _ := cpuid(1)
 | ||
| 	cache := (ebx & 0xff00) >> 5 // cflush size
 | ||
| 	if cache == 0 && maxExtendedFunction() >= 0x80000006 {
 | ||
| 		_, _, ecx, _ := cpuid(0x80000006)
 | ||
| 		cache = ecx & 0xff // cacheline size
 | ||
| 	}
 | ||
| 	// TODO: Read from Cache and TLB Information
 | ||
| 	return int(cache)
 | ||
| }
 | ||
| 
 | ||
| func (c *CPUInfo) cacheSize() {
 | ||
| 	c.Cache.L1D = -1
 | ||
| 	c.Cache.L1I = -1
 | ||
| 	c.Cache.L2 = -1
 | ||
| 	c.Cache.L3 = -1
 | ||
| 	vendor := vendorID()
 | ||
| 	switch vendor {
 | ||
| 	case Intel:
 | ||
| 		if maxFunctionID() < 4 {
 | ||
| 			return
 | ||
| 		}
 | ||
| 		for i := uint32(0); ; i++ {
 | ||
| 			eax, ebx, ecx, _ := cpuidex(4, i)
 | ||
| 			cacheType := eax & 15
 | ||
| 			if cacheType == 0 {
 | ||
| 				break
 | ||
| 			}
 | ||
| 			cacheLevel := (eax >> 5) & 7
 | ||
| 			coherency := int(ebx&0xfff) + 1
 | ||
| 			partitions := int((ebx>>12)&0x3ff) + 1
 | ||
| 			associativity := int((ebx>>22)&0x3ff) + 1
 | ||
| 			sets := int(ecx) + 1
 | ||
| 			size := associativity * partitions * coherency * sets
 | ||
| 			switch cacheLevel {
 | ||
| 			case 1:
 | ||
| 				if cacheType == 1 {
 | ||
| 					// 1 = Data Cache
 | ||
| 					c.Cache.L1D = size
 | ||
| 				} else if cacheType == 2 {
 | ||
| 					// 2 = Instruction Cache
 | ||
| 					c.Cache.L1I = size
 | ||
| 				} else {
 | ||
| 					if c.Cache.L1D < 0 {
 | ||
| 						c.Cache.L1I = size
 | ||
| 					}
 | ||
| 					if c.Cache.L1I < 0 {
 | ||
| 						c.Cache.L1I = size
 | ||
| 					}
 | ||
| 				}
 | ||
| 			case 2:
 | ||
| 				c.Cache.L2 = size
 | ||
| 			case 3:
 | ||
| 				c.Cache.L3 = size
 | ||
| 			}
 | ||
| 		}
 | ||
| 	case AMD:
 | ||
| 		// Untested.
 | ||
| 		if maxExtendedFunction() < 0x80000005 {
 | ||
| 			return
 | ||
| 		}
 | ||
| 		_, _, ecx, edx := cpuid(0x80000005)
 | ||
| 		c.Cache.L1D = int(((ecx >> 24) & 0xFF) * 1024)
 | ||
| 		c.Cache.L1I = int(((edx >> 24) & 0xFF) * 1024)
 | ||
| 
 | ||
| 		if maxExtendedFunction() < 0x80000006 {
 | ||
| 			return
 | ||
| 		}
 | ||
| 		_, _, ecx, _ = cpuid(0x80000006)
 | ||
| 		c.Cache.L2 = int(((ecx >> 16) & 0xFFFF) * 1024)
 | ||
| 	}
 | ||
| 
 | ||
| 	return
 | ||
| }
 | ||
| 
 | ||
| type SGXSupport struct {
 | ||
| 	Available           bool
 | ||
| 	SGX1Supported       bool
 | ||
| 	SGX2Supported       bool
 | ||
| 	MaxEnclaveSizeNot64 int64
 | ||
| 	MaxEnclaveSize64    int64
 | ||
| }
 | ||
| 
 | ||
| func sgx(available bool) (rval SGXSupport) {
 | ||
| 	rval.Available = available
 | ||
| 
 | ||
| 	if !available {
 | ||
| 		return
 | ||
| 	}
 | ||
| 
 | ||
| 	a, _, _, d := cpuidex(0x12, 0)
 | ||
| 	rval.SGX1Supported = a&0x01 != 0
 | ||
| 	rval.SGX2Supported = a&0x02 != 0
 | ||
| 	rval.MaxEnclaveSizeNot64 = 1 << (d & 0xFF)     // pow 2
 | ||
| 	rval.MaxEnclaveSize64 = 1 << ((d >> 8) & 0xFF) // pow 2
 | ||
| 
 | ||
| 	return
 | ||
| }
 | ||
| 
 | ||
| func support() Flags {
 | ||
| 	mfi := maxFunctionID()
 | ||
| 	vend := vendorID()
 | ||
| 	if mfi < 0x1 {
 | ||
| 		return 0
 | ||
| 	}
 | ||
| 	rval := uint64(0)
 | ||
| 	_, _, c, d := cpuid(1)
 | ||
| 	if (d & (1 << 15)) != 0 {
 | ||
| 		rval |= CMOV
 | ||
| 	}
 | ||
| 	if (d & (1 << 23)) != 0 {
 | ||
| 		rval |= MMX
 | ||
| 	}
 | ||
| 	if (d & (1 << 25)) != 0 {
 | ||
| 		rval |= MMXEXT
 | ||
| 	}
 | ||
| 	if (d & (1 << 25)) != 0 {
 | ||
| 		rval |= SSE
 | ||
| 	}
 | ||
| 	if (d & (1 << 26)) != 0 {
 | ||
| 		rval |= SSE2
 | ||
| 	}
 | ||
| 	if (c & 1) != 0 {
 | ||
| 		rval |= SSE3
 | ||
| 	}
 | ||
| 	if (c & 0x00000200) != 0 {
 | ||
| 		rval |= SSSE3
 | ||
| 	}
 | ||
| 	if (c & 0x00080000) != 0 {
 | ||
| 		rval |= SSE4
 | ||
| 	}
 | ||
| 	if (c & 0x00100000) != 0 {
 | ||
| 		rval |= SSE42
 | ||
| 	}
 | ||
| 	if (c & (1 << 25)) != 0 {
 | ||
| 		rval |= AESNI
 | ||
| 	}
 | ||
| 	if (c & (1 << 1)) != 0 {
 | ||
| 		rval |= CLMUL
 | ||
| 	}
 | ||
| 	if c&(1<<23) != 0 {
 | ||
| 		rval |= POPCNT
 | ||
| 	}
 | ||
| 	if c&(1<<30) != 0 {
 | ||
| 		rval |= RDRAND
 | ||
| 	}
 | ||
| 	if c&(1<<29) != 0 {
 | ||
| 		rval |= F16C
 | ||
| 	}
 | ||
| 	if c&(1<<13) != 0 {
 | ||
| 		rval |= CX16
 | ||
| 	}
 | ||
| 	if vend == Intel && (d&(1<<28)) != 0 && mfi >= 4 {
 | ||
| 		if threadsPerCore() > 1 {
 | ||
| 			rval |= HTT
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	// Check XGETBV, OXSAVE and AVX bits
 | ||
| 	if c&(1<<26) != 0 && c&(1<<27) != 0 && c&(1<<28) != 0 {
 | ||
| 		// Check for OS support
 | ||
| 		eax, _ := xgetbv(0)
 | ||
| 		if (eax & 0x6) == 0x6 {
 | ||
| 			rval |= AVX
 | ||
| 			if (c & 0x00001000) != 0 {
 | ||
| 				rval |= FMA3
 | ||
| 			}
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	// Check AVX2, AVX2 requires OS support, but BMI1/2 don't.
 | ||
| 	if mfi >= 7 {
 | ||
| 		_, ebx, ecx, _ := cpuidex(7, 0)
 | ||
| 		if (rval&AVX) != 0 && (ebx&0x00000020) != 0 {
 | ||
| 			rval |= AVX2
 | ||
| 		}
 | ||
| 		if (ebx & 0x00000008) != 0 {
 | ||
| 			rval |= BMI1
 | ||
| 			if (ebx & 0x00000100) != 0 {
 | ||
| 				rval |= BMI2
 | ||
| 			}
 | ||
| 		}
 | ||
| 		if ebx&(1<<2) != 0 {
 | ||
| 			rval |= SGX
 | ||
| 		}
 | ||
| 		if ebx&(1<<4) != 0 {
 | ||
| 			rval |= HLE
 | ||
| 		}
 | ||
| 		if ebx&(1<<9) != 0 {
 | ||
| 			rval |= ERMS
 | ||
| 		}
 | ||
| 		if ebx&(1<<11) != 0 {
 | ||
| 			rval |= RTM
 | ||
| 		}
 | ||
| 		if ebx&(1<<14) != 0 {
 | ||
| 			rval |= MPX
 | ||
| 		}
 | ||
| 		if ebx&(1<<18) != 0 {
 | ||
| 			rval |= RDSEED
 | ||
| 		}
 | ||
| 		if ebx&(1<<19) != 0 {
 | ||
| 			rval |= ADX
 | ||
| 		}
 | ||
| 		if ebx&(1<<29) != 0 {
 | ||
| 			rval |= SHA
 | ||
| 		}
 | ||
| 
 | ||
| 		// Only detect AVX-512 features if XGETBV is supported
 | ||
| 		if c&((1<<26)|(1<<27)) == (1<<26)|(1<<27) {
 | ||
| 			// Check for OS support
 | ||
| 			eax, _ := xgetbv(0)
 | ||
| 
 | ||
| 			// Verify that XCR0[7:5] = ‘111b’ (OPMASK state, upper 256-bit of ZMM0-ZMM15 and
 | ||
| 			// ZMM16-ZMM31 state are enabled by OS)
 | ||
| 			/// and that XCR0[2:1] = ‘11b’ (XMM state and YMM state are enabled by OS).
 | ||
| 			if (eax>>5)&7 == 7 && (eax>>1)&3 == 3 {
 | ||
| 				if ebx&(1<<16) != 0 {
 | ||
| 					rval |= AVX512F
 | ||
| 				}
 | ||
| 				if ebx&(1<<17) != 0 {
 | ||
| 					rval |= AVX512DQ
 | ||
| 				}
 | ||
| 				if ebx&(1<<21) != 0 {
 | ||
| 					rval |= AVX512IFMA
 | ||
| 				}
 | ||
| 				if ebx&(1<<26) != 0 {
 | ||
| 					rval |= AVX512PF
 | ||
| 				}
 | ||
| 				if ebx&(1<<27) != 0 {
 | ||
| 					rval |= AVX512ER
 | ||
| 				}
 | ||
| 				if ebx&(1<<28) != 0 {
 | ||
| 					rval |= AVX512CD
 | ||
| 				}
 | ||
| 				if ebx&(1<<30) != 0 {
 | ||
| 					rval |= AVX512BW
 | ||
| 				}
 | ||
| 				if ebx&(1<<31) != 0 {
 | ||
| 					rval |= AVX512VL
 | ||
| 				}
 | ||
| 				// ecx
 | ||
| 				if ecx&(1<<1) != 0 {
 | ||
| 					rval |= AVX512VBMI
 | ||
| 				}
 | ||
| 			}
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	if maxExtendedFunction() >= 0x80000001 {
 | ||
| 		_, _, c, d := cpuid(0x80000001)
 | ||
| 		if (c & (1 << 5)) != 0 {
 | ||
| 			rval |= LZCNT
 | ||
| 			rval |= POPCNT
 | ||
| 		}
 | ||
| 		if (d & (1 << 31)) != 0 {
 | ||
| 			rval |= AMD3DNOW
 | ||
| 		}
 | ||
| 		if (d & (1 << 30)) != 0 {
 | ||
| 			rval |= AMD3DNOWEXT
 | ||
| 		}
 | ||
| 		if (d & (1 << 23)) != 0 {
 | ||
| 			rval |= MMX
 | ||
| 		}
 | ||
| 		if (d & (1 << 22)) != 0 {
 | ||
| 			rval |= MMXEXT
 | ||
| 		}
 | ||
| 		if (c & (1 << 6)) != 0 {
 | ||
| 			rval |= SSE4A
 | ||
| 		}
 | ||
| 		if d&(1<<20) != 0 {
 | ||
| 			rval |= NX
 | ||
| 		}
 | ||
| 		if d&(1<<27) != 0 {
 | ||
| 			rval |= RDTSCP
 | ||
| 		}
 | ||
| 
 | ||
| 		/* Allow for selectively disabling SSE2 functions on AMD processors
 | ||
| 		   with SSE2 support but not SSE4a. This includes Athlon64, some
 | ||
| 		   Opteron, and some Sempron processors. MMX, SSE, or 3DNow! are faster
 | ||
| 		   than SSE2 often enough to utilize this special-case flag.
 | ||
| 		   AV_CPU_FLAG_SSE2 and AV_CPU_FLAG_SSE2SLOW are both set in this case
 | ||
| 		   so that SSE2 is used unless explicitly disabled by checking
 | ||
| 		   AV_CPU_FLAG_SSE2SLOW. */
 | ||
| 		if vendorID() != Intel &&
 | ||
| 			rval&SSE2 != 0 && (c&0x00000040) == 0 {
 | ||
| 			rval |= SSE2SLOW
 | ||
| 		}
 | ||
| 
 | ||
| 		/* XOP and FMA4 use the AVX instruction coding scheme, so they can't be
 | ||
| 		 * used unless the OS has AVX support. */
 | ||
| 		if (rval & AVX) != 0 {
 | ||
| 			if (c & 0x00000800) != 0 {
 | ||
| 				rval |= XOP
 | ||
| 			}
 | ||
| 			if (c & 0x00010000) != 0 {
 | ||
| 				rval |= FMA4
 | ||
| 			}
 | ||
| 		}
 | ||
| 
 | ||
| 		if vendorID() == Intel {
 | ||
| 			family, model := familyModel()
 | ||
| 			if family == 6 && (model == 9 || model == 13 || model == 14) {
 | ||
| 				/* 6/9 (pentium-m "banias"), 6/13 (pentium-m "dothan"), and
 | ||
| 				 * 6/14 (core1 "yonah") theoretically support sse2, but it's
 | ||
| 				 * usually slower than mmx. */
 | ||
| 				if (rval & SSE2) != 0 {
 | ||
| 					rval |= SSE2SLOW
 | ||
| 				}
 | ||
| 				if (rval & SSE3) != 0 {
 | ||
| 					rval |= SSE3SLOW
 | ||
| 				}
 | ||
| 			}
 | ||
| 			/* The Atom processor has SSSE3 support, which is useful in many cases,
 | ||
| 			 * but sometimes the SSSE3 version is slower than the SSE2 equivalent
 | ||
| 			 * on the Atom, but is generally faster on other processors supporting
 | ||
| 			 * SSSE3. This flag allows for selectively disabling certain SSSE3
 | ||
| 			 * functions on the Atom. */
 | ||
| 			if family == 6 && model == 28 {
 | ||
| 				rval |= ATOM
 | ||
| 			}
 | ||
| 		}
 | ||
| 	}
 | ||
| 	return Flags(rval)
 | ||
| }
 | ||
| 
 | ||
| func valAsString(values ...uint32) []byte {
 | ||
| 	r := make([]byte, 4*len(values))
 | ||
| 	for i, v := range values {
 | ||
| 		dst := r[i*4:]
 | ||
| 		dst[0] = byte(v & 0xff)
 | ||
| 		dst[1] = byte((v >> 8) & 0xff)
 | ||
| 		dst[2] = byte((v >> 16) & 0xff)
 | ||
| 		dst[3] = byte((v >> 24) & 0xff)
 | ||
| 		switch {
 | ||
| 		case dst[0] == 0:
 | ||
| 			return r[:i*4]
 | ||
| 		case dst[1] == 0:
 | ||
| 			return r[:i*4+1]
 | ||
| 		case dst[2] == 0:
 | ||
| 			return r[:i*4+2]
 | ||
| 		case dst[3] == 0:
 | ||
| 			return r[:i*4+3]
 | ||
| 		}
 | ||
| 	}
 | ||
| 	return r
 | ||
| }
 |